MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmuldiv Structured version   Visualization version   GIF version

Theorem divmuldiv 11342
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
divmuldiv (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))

Proof of Theorem divmuldiv
StepHypRef Expression
1 3anass 1091 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ↔ (𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)))
2 3anass 1091 . . 3 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) ↔ (𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)))
3 divcl 11306 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
4 divcl 11306 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℂ)
5 mulcl 10623 . . . . . 6 (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ)
63, 4, 5syl2an 597 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ)
7 mulcl 10623 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ)
87ad2ant2r 745 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
983adantr1 1165 . . . . . 6 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
1093adantl1 1162 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ∈ ℂ)
11 mulne0 11284 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
12113adantr1 1165 . . . . . 6 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
13123adantl1 1162 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 · 𝐷) ≠ 0)
14 divcan3 11326 . . . . 5 ((((𝐴 / 𝐶) · (𝐵 / 𝐷)) ∈ ℂ ∧ (𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) ≠ 0) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 / 𝐶) · (𝐵 / 𝐷)))
156, 10, 13, 14syl3anc 1367 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 / 𝐶) · (𝐵 / 𝐷)))
16 simp2 1133 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → 𝐶 ∈ ℂ)
1716, 3jca 514 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐶 ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ))
18 simp2 1133 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → 𝐷 ∈ ℂ)
1918, 4jca 514 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐷 ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ))
20 mul4 10810 . . . . . . 7 (((𝐶 ∈ ℂ ∧ (𝐴 / 𝐶) ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))))
2117, 19, 20syl2an 597 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))))
22 divcan2 11308 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐶 · (𝐴 / 𝐶)) = 𝐴)
23 divcan2 11308 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐷 · (𝐵 / 𝐷)) = 𝐵)
2422, 23oveqan12d 7177 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · (𝐴 / 𝐶)) · (𝐷 · (𝐵 / 𝐷))) = (𝐴 · 𝐵))
2521, 24eqtr3d 2860 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) = (𝐴 · 𝐵))
2625oveq1d 7173 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (((𝐶 · 𝐷) · ((𝐴 / 𝐶) · (𝐵 / 𝐷))) / (𝐶 · 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
2715, 26eqtr3d 2860 . . 3 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
281, 2, 27syl2anbr 600 . 2 (((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) ∧ (𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
2928an4s 658 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  (class class class)co 7158  cc 10537  0cc0 10539   · cmul 10544   / cdiv 11299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300
This theorem is referenced by:  divdivdiv  11343  divcan5  11344  divmul13  11345  divmul24  11346  divmuldivi  11402  divmuldivd  11459  qmulcl  12369  mulexpz  13472  expaddz  13476  sqdiv  13490  faclbnd2  13654  bcm1k  13678  bcp1n  13679  pythagtriplem16  16169  dvsqrt  25325  dquartlem1  25431  basellem8  25667  dchrvmasumlem1  26073  dchrvmasum2lem  26074  pntlemr  26180  pntlemf  26183  wallispilem4  42360
  Copyright terms: Public domain W3C validator