MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divne0d Structured version   Visualization version   GIF version

Theorem divne0d 10662
Description: The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divne0d.3 (𝜑𝐴 ≠ 0)
divne0d.4 (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
divne0d (𝜑 → (𝐴 / 𝐵) ≠ 0)

Proof of Theorem divne0d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divne0d.3 . 2 (𝜑𝐴 ≠ 0)
3 divcld.2 . 2 (𝜑𝐵 ∈ ℂ)
4 divne0d.4 . 2 (𝜑𝐵 ≠ 0)
5 divne0 10542 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0)
61, 2, 3, 4, 5syl22anc 1318 1 (𝜑 → (𝐴 / 𝐵) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1975  wne 2775  (class class class)co 6523  cc 9786  0cc0 9788   / cdiv 10529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-po 4945  df-so 4946  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530
This theorem is referenced by:  ntrivcvgtail  14413  tanval3  14645  lcmgcdlem  15099  pcdiv  15337  pcqdiv  15342  sylow1lem1  17778  i1fmulc  23189  itg1mulc  23190  dvcnvlem  23456  plydivlem4  23768  tanarg  24082  logcnlem4  24104  angcld  24248  angrteqvd  24249  cosangneg2d  24250  angrtmuld  24251  ang180lem1  24252  ang180lem2  24253  ang180lem3  24254  ang180lem4  24255  ang180lem5  24256  lawcoslem1  24258  lawcos  24259  isosctrlem2  24262  isosctrlem3  24263  angpieqvdlem2  24269  mcubic  24287  cubic2  24288  cubic  24289  quartlem4  24300  tanatan  24359  dmgmdivn0  24467  lgamgulmlem2  24469  gamcvg2lem  24498  qqhval2lem  29155  iprodgam  30683  pellexlem6  36215  bccm1k  37362  ioodvbdlimc1lem2  38622  ioodvbdlimc2lem  38624  wallispilem4  38761  stirlinglem1  38767  stirlinglem3  38769  stirlinglem4  38770  stirlinglem7  38773  stirlinglem13  38779  stirlinglem14  38780  stirlinglem15  38781
  Copyright terms: Public domain W3C validator