Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divnumden2 Structured version   Visualization version   GIF version

Theorem divnumden2 30536
Description: Calculate the reduced form of a quotient using gcd. This version extends divnumden 16090 for the negative integers. (Contributed by Thierry Arnoux, 25-Oct-2017.)
Assertion
Ref Expression
divnumden2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵))))

Proof of Theorem divnumden2
StepHypRef Expression
1 zssq 12358 . . . . . . . 8 ℤ ⊆ ℚ
2 simp1 1132 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
31, 2sseldi 3967 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℚ)
4 simp2 1133 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
51, 4sseldi 3967 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℚ)
6 nnne0 11674 . . . . . . . . . . . 12 (-𝐵 ∈ ℕ → -𝐵 ≠ 0)
763ad2ant3 1131 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -𝐵 ≠ 0)
8 neg0 10934 . . . . . . . . . . . 12 -0 = 0
98neeq2i 3083 . . . . . . . . . . 11 (-𝐵 ≠ -0 ↔ -𝐵 ≠ 0)
107, 9sylibr 236 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -𝐵 ≠ -0)
1110neneqd 3023 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ -𝐵 = -0)
124zcnd 12091 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
13 0cnd 10636 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 0 ∈ ℂ)
1412, 13neg11ad 10995 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐵 = -0 ↔ 𝐵 = 0))
1511, 14mtbid 326 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ 𝐵 = 0)
1615neqned 3025 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ≠ 0)
17 qdivcl 12372 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
183, 5, 16, 17syl3anc 1367 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
19 qnumcl 16082 . . . . . 6 ((𝐴 / 𝐵) ∈ ℚ → (numer‘(𝐴 / 𝐵)) ∈ ℤ)
2018, 19syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) ∈ ℤ)
2120zcnd 12091 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) ∈ ℂ)
22 simpl 485 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
2322zcnd 12091 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
24233adant2 1127 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
252, 4gcdcld 15859 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ0)
2625nn0cnd 11960 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ)
2726negcld 10986 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 gcd 𝐵) ∈ ℂ)
2815intnand 491 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
29 gcdeq0 15867 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3029necon3abid 3054 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ≠ 0 ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
31303adant3 1128 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ≠ 0 ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
3228, 31mpbird 259 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
3326, 32negne0d 10997 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 gcd 𝐵) ≠ 0)
3424, 27, 33divcld 11418 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / -(𝐴 gcd 𝐵)) ∈ ℂ)
3524, 12, 16divneg2d 11432 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / 𝐵) = (𝐴 / -𝐵))
3635fveq2d 6676 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘-(𝐴 / 𝐵)) = (numer‘(𝐴 / -𝐵)))
37 numdenneg 30535 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℚ → ((numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)) ∧ (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵))))
3837simpld 497 . . . . . 6 ((𝐴 / 𝐵) ∈ ℚ → (numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)))
3918, 38syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)))
40 gcdneg 15872 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd -𝐵) = (𝐴 gcd 𝐵))
41403adant3 1128 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd -𝐵) = (𝐴 gcd 𝐵))
4241oveq2d 7174 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd -𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
43 divnumden 16090 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)) ∧ (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵))))
4443simpld 497 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)))
45443adant2 1127 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)))
4624, 27, 33divnegd 11431 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / -(𝐴 gcd 𝐵)) = (-𝐴 / -(𝐴 gcd 𝐵)))
4724, 26, 32div2negd 11433 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐴 / -(𝐴 gcd 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
4846, 47eqtrd 2858 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / -(𝐴 gcd 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
4942, 45, 483eqtr4d 2868 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = -(𝐴 / -(𝐴 gcd 𝐵)))
5036, 39, 493eqtr3d 2866 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(numer‘(𝐴 / 𝐵)) = -(𝐴 / -(𝐴 gcd 𝐵)))
5121, 34, 50neg11d 11011 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) = (𝐴 / -(𝐴 gcd 𝐵)))
5224, 26, 32divneg2d 11432 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / (𝐴 gcd 𝐵)) = (𝐴 / -(𝐴 gcd 𝐵)))
5351, 52eqtr4d 2861 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)))
5435fveq2d 6676 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / -𝐵)))
5537simprd 498 . . . . 5 ((𝐴 / 𝐵) ∈ ℚ → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵)))
5618, 55syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵)))
5741oveq2d 7174 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐵 / (𝐴 gcd -𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
5843simprd 498 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵)))
59583adant2 1127 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵)))
6012, 26, 32divneg2d 11432 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐵 / (𝐴 gcd 𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6112, 26, 32divnegd 11431 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐵 / (𝐴 gcd 𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
6260, 61eqtr3d 2860 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐵 / -(𝐴 gcd 𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
6357, 59, 623eqtr4d 2868 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6454, 56, 633eqtr3d 2866 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6564, 60eqtr4d 2861 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵)))
6653, 65jca 514 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  -cneg 10873   / cdiv 11299  cn 11640  cz 11984  cq 12351   gcd cgcd 15845  numercnumer 16075  denomcdenom 16076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-gcd 15846  df-numer 16077  df-denom 16078
This theorem is referenced by:  qqhval2lem  31224
  Copyright terms: Public domain W3C validator