Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngidl Structured version   Visualization version   GIF version

Theorem divrngidl 33445
Description: The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
divrngidl.1 𝐺 = (1st𝑅)
divrngidl.2 𝐻 = (2nd𝑅)
divrngidl.3 𝑋 = ran 𝐺
divrngidl.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
divrngidl (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋})

Proof of Theorem divrngidl
Dummy variables 𝑖 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divrngidl.1 . . 3 𝐺 = (1st𝑅)
2 divrngidl.2 . . 3 𝐻 = (2nd𝑅)
3 divrngidl.4 . . 3 𝑍 = (GId‘𝐺)
4 divrngidl.3 . . 3 𝑋 = ran 𝐺
5 eqid 2626 . . 3 (GId‘𝐻) = (GId‘𝐻)
61, 2, 3, 4, 5isdrngo2 33375 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻))))
71, 3idl0cl 33435 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑍𝑖)
87adantr 481 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → 𝑍𝑖)
9 fvex 6160 . . . . . . . . . . . . . 14 (GId‘𝐺) ∈ V
103, 9eqeltri 2700 . . . . . . . . . . . . 13 𝑍 ∈ V
1110snss 4291 . . . . . . . . . . . 12 (𝑍𝑖 ↔ {𝑍} ⊆ 𝑖)
12 necom 2849 . . . . . . . . . . . 12 (𝑖 ≠ {𝑍} ↔ {𝑍} ≠ 𝑖)
13 pssdifn0 3923 . . . . . . . . . . . . 13 (({𝑍} ⊆ 𝑖 ∧ {𝑍} ≠ 𝑖) → (𝑖 ∖ {𝑍}) ≠ ∅)
14 n0 3912 . . . . . . . . . . . . 13 ((𝑖 ∖ {𝑍}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
1513, 14sylib 208 . . . . . . . . . . . 12 (({𝑍} ⊆ 𝑖 ∧ {𝑍} ≠ 𝑖) → ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
1611, 12, 15syl2anb 496 . . . . . . . . . . 11 ((𝑍𝑖𝑖 ≠ {𝑍}) → ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
171, 4idlss 33433 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖𝑋)
18 ssdif 3728 . . . . . . . . . . . . . . . . . 18 (𝑖𝑋 → (𝑖 ∖ {𝑍}) ⊆ (𝑋 ∖ {𝑍}))
1918sselda 3588 . . . . . . . . . . . . . . . . 17 ((𝑖𝑋𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑧 ∈ (𝑋 ∖ {𝑍}))
2017, 19sylan 488 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑧 ∈ (𝑋 ∖ {𝑍}))
21 oveq2 6613 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑦𝐻𝑥) = (𝑦𝐻𝑧))
2221eqeq1d 2628 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝑦𝐻𝑥) = (GId‘𝐻) ↔ (𝑦𝐻𝑧) = (GId‘𝐻)))
2322rexbidv 3050 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻) ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻)))
2423rspcva 3298 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻))
2520, 24sylan 488 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻))
26 eldifi 3715 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑧𝑖)
27 eldifi 3715 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑋 ∖ {𝑍}) → 𝑦𝑋)
2826, 27anim12i 589 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (𝑖 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → (𝑧𝑖𝑦𝑋))
291, 2, 4idllmulcl 33437 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → (𝑦𝐻𝑧) ∈ 𝑖)
301, 2, 4, 51idl 33443 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
3130biimpd 219 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
3231adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
33 eleq1 2692 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐻𝑧) = (GId‘𝐻) → ((𝑦𝐻𝑧) ∈ 𝑖 ↔ (GId‘𝐻) ∈ 𝑖))
3433imbi1d 331 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐻𝑧) = (GId‘𝐻) → (((𝑦𝐻𝑧) ∈ 𝑖𝑖 = 𝑋) ↔ ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋)))
3532, 34syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((𝑦𝐻𝑧) = (GId‘𝐻) → ((𝑦𝐻𝑧) ∈ 𝑖𝑖 = 𝑋)))
3629, 35mpid 44 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3728, 36sylan2 491 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧 ∈ (𝑖 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍}))) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3837anassrs 679 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3938rexlimdva 3029 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
4039imp 445 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻)) → 𝑖 = 𝑋)
4125, 40syldan 487 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → 𝑖 = 𝑋)
4241an32s 845 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑖 = 𝑋)
4342ex 450 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑖 = 𝑋))
4443exlimdv 1863 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑖 = 𝑋))
4516, 44syl5 34 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ((𝑍𝑖𝑖 ≠ {𝑍}) → 𝑖 = 𝑋))
468, 45mpand 710 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
4746an32s 845 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
48 neor 2887 . . . . . . . 8 ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ↔ (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
4947, 48sylibr 224 . . . . . . 7 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
5049ex 450 . . . . . 6 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) → (𝑖 = {𝑍} ∨ 𝑖 = 𝑋)))
511, 30idl 33442 . . . . . . . . 9 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
52 eleq1 2692 . . . . . . . . 9 (𝑖 = {𝑍} → (𝑖 ∈ (Idl‘𝑅) ↔ {𝑍} ∈ (Idl‘𝑅)))
5351, 52syl5ibrcom 237 . . . . . . . 8 (𝑅 ∈ RingOps → (𝑖 = {𝑍} → 𝑖 ∈ (Idl‘𝑅)))
541, 4rngoidl 33441 . . . . . . . . 9 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
55 eleq1 2692 . . . . . . . . 9 (𝑖 = 𝑋 → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑋 ∈ (Idl‘𝑅)))
5654, 55syl5ibrcom 237 . . . . . . . 8 (𝑅 ∈ RingOps → (𝑖 = 𝑋𝑖 ∈ (Idl‘𝑅)))
5753, 56jaod 395 . . . . . . 7 (𝑅 ∈ RingOps → ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) → 𝑖 ∈ (Idl‘𝑅)))
5857adantr 481 . . . . . 6 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) → 𝑖 ∈ (Idl‘𝑅)))
5950, 58impbid 202 . . . . 5 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋)))
60 vex 3194 . . . . . 6 𝑖 ∈ V
6160elpr 4174 . . . . 5 (𝑖 ∈ {{𝑍}, 𝑋} ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
6259, 61syl6bbr 278 . . . 4 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑖 ∈ {{𝑍}, 𝑋}))
6362eqrdv 2624 . . 3 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (Idl‘𝑅) = {{𝑍}, 𝑋})
6463adantrl 751 . 2 ((𝑅 ∈ RingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻))) → (Idl‘𝑅) = {{𝑍}, 𝑋})
656, 64sylbi 207 1 (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1480  wex 1701  wcel 1992  wne 2796  wral 2912  wrex 2913  Vcvv 3191  cdif 3557  wss 3560  c0 3896  {csn 4153  {cpr 4155  ran crn 5080  cfv 5850  (class class class)co 6605  1st c1st 7114  2nd c2nd 7115  GIdcgi 27184  RingOpscrngo 33311  DivRingOpscdrng 33365  Idlcidl 33424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-om 7014  df-1st 7116  df-2nd 7117  df-1o 7506  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-grpo 27187  df-gid 27188  df-ginv 27189  df-ablo 27239  df-ass 33260  df-exid 33262  df-mgmOLD 33266  df-sgrOLD 33278  df-mndo 33284  df-rngo 33312  df-drngo 33366  df-idl 33427
This theorem is referenced by:  divrngpr  33470  isfldidl  33485
  Copyright terms: Public domain W3C validator