HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmadjss Structured version   Visualization version   GIF version

Theorem dmadjss 28595
Description: The domain of the adjoint function is a subset of the maps from to . (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmadjss dom adj ⊆ ( ℋ ↑𝑚 ℋ)

Proof of Theorem dmadjss
Dummy variables 𝑢 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfadj2 28593 . . . 4 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
2 3anass 1040 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
3 ax-hilex 27705 . . . . . . . 8 ℋ ∈ V
43, 3elmap 7830 . . . . . . 7 (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↔ 𝑡: ℋ⟶ ℋ)
54anbi1i 730 . . . . . 6 ((𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))) ↔ (𝑡: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
62, 5bitr4i 267 . . . . 5 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
76opabbii 4679 . . . 4 {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))}
81, 7eqtri 2643 . . 3 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))}
98dmeqi 5285 . 2 dom adj = dom {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))}
10 dmopabss 5296 . 2 dom {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))} ⊆ ( ℋ ↑𝑚 ℋ)
119, 10eqsstri 3614 1 dom adj ⊆ ( ℋ ↑𝑚 ℋ)
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wss 3555  {copab 4672  dom cdm 5074  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  chil 27625   ·ih csp 27628  adjcado 27661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-hilex 27705  ax-hfi 27785  ax-his1 27788
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-2 11023  df-cj 13773  df-re 13774  df-im 13775  df-adjh 28557
This theorem is referenced by:  dmadjop  28596
  Copyright terms: Public domain W3C validator