MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatcrng Structured version   Visualization version   GIF version

Theorem dmatcrng 20248
Description: The subring of diagonal matrices (over a commutative ring) is a commutative ring . (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
dmatcrng.c 𝐶 = (𝐴s 𝐷)
Assertion
Ref Expression
dmatcrng ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing)

Proof of Theorem dmatcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 18498 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 dmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 dmatid.0 . . . . 5 0 = (0g𝑅)
5 dmatid.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
62, 3, 4, 5dmatsrng 20247 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
71, 6sylan 488 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
8 dmatcrng.c . . . 4 𝐶 = (𝐴s 𝐷)
98subrgring 18723 . . 3 (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
107, 9syl 17 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ Ring)
11 simp1lr 1123 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
12 eqid 2621 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2621 . . . . . . . . . 10 (Base‘𝐴) = (Base‘𝐴)
14 simp2 1060 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
15 simp3 1061 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
162, 13, 4, 5dmatmat 20240 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝐷𝑥 ∈ (Base‘𝐴)))
1716imp 445 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐷) → 𝑥 ∈ (Base‘𝐴))
1817adantrr 752 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → 𝑥 ∈ (Base‘𝐴))
19183ad2ant1 1080 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑥 ∈ (Base‘𝐴))
202, 12, 13, 14, 15, 19matecld 20172 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑥𝑏) ∈ (Base‘𝑅))
212, 13, 4, 5dmatmat 20240 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝐷𝑦 ∈ (Base‘𝐴)))
2221imp 445 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐷) → 𝑦 ∈ (Base‘𝐴))
2322adantrl 751 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → 𝑦 ∈ (Base‘𝐴))
24233ad2ant1 1080 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑦 ∈ (Base‘𝐴))
252, 12, 13, 14, 15, 24matecld 20172 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑦𝑏) ∈ (Base‘𝑅))
26 eqid 2621 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2712, 26crngcom 18502 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑎𝑥𝑏) ∈ (Base‘𝑅) ∧ (𝑎𝑦𝑏) ∈ (Base‘𝑅)) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2811, 20, 25, 27syl3anc 1323 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2928ifeq1d 4082 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 ) = if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 ))
3029mpt2eq3dva 6684 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
311anim2i 592 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
322, 3, 4, 5dmatmul 20243 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
3331, 32sylan 488 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
34 pm3.22 465 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → (𝑦𝐷𝑥𝐷))
352, 3, 4, 5dmatmul 20243 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐷𝑥𝐷)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
3631, 34, 35syl2an 494 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
3730, 33, 363eqtr4d 2665 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3837ralrimivva 2967 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3938ancoms 469 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
408subrgbas 18729 . . . . . 6 (𝐷 ∈ (SubRing‘𝐴) → 𝐷 = (Base‘𝐶))
4140eqcomd 2627 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (Base‘𝐶) = 𝐷)
42 eqid 2621 . . . . . . . . . 10 (.r𝐴) = (.r𝐴)
438, 42ressmulr 15946 . . . . . . . . 9 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
4443eqcomd 2627 . . . . . . . 8 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐶) = (.r𝐴))
4544oveqd 6632 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
4644oveqd 6632 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (𝑦(.r𝐶)𝑥) = (𝑦(.r𝐴)𝑥))
4745, 46eqeq12d 2636 . . . . . 6 (𝐷 ∈ (SubRing‘𝐴) → ((𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4841, 47raleqbidv 3145 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4941, 48raleqbidv 3145 . . . 4 (𝐷 ∈ (SubRing‘𝐴) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
507, 49syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5139, 50mpbird 247 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
52 eqid 2621 . . 3 (Base‘𝐶) = (Base‘𝐶)
53 eqid 2621 . . 3 (.r𝐶) = (.r𝐶)
5452, 53iscrng2 18503 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
5510, 51, 54sylanbrc 697 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2908  ifcif 4064  cfv 5857  (class class class)co 6615  cmpt2 6617  Fincfn 7915  Basecbs 15800  s cress 15801  .rcmulr 15882  0gc0g 16040  Ringcrg 18487  CRingccrg 18488  SubRingcsubrg 18716   Mat cmat 20153   DMat cdmat 20234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-ot 4164  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-sup 8308  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-fz 12285  df-fzo 12423  df-seq 12758  df-hash 13074  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-hom 15906  df-cco 15907  df-0g 16042  df-gsum 16043  df-prds 16048  df-pws 16050  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-submnd 17276  df-grp 17365  df-minusg 17366  df-sbg 17367  df-mulg 17481  df-subg 17531  df-ghm 17598  df-cntz 17690  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-subrg 18718  df-lmod 18805  df-lss 18873  df-sra 19112  df-rgmod 19113  df-dsmm 20016  df-frlm 20031  df-mamu 20130  df-mat 20154  df-dmat 20236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator