MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatcrng Structured version   Visualization version   GIF version

Theorem dmatcrng 21113
Description: The subring of diagonal matrices (over a commutative ring) is a commutative ring . (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
dmatcrng.c 𝐶 = (𝐴s 𝐷)
Assertion
Ref Expression
dmatcrng ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing)

Proof of Theorem dmatcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19310 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 dmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 dmatid.0 . . . . 5 0 = (0g𝑅)
5 dmatid.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
62, 3, 4, 5dmatsrng 21112 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
71, 6sylan 582 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
8 dmatcrng.c . . . 4 𝐶 = (𝐴s 𝐷)
98subrgring 19540 . . 3 (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
107, 9syl 17 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ Ring)
11 simp1lr 1233 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
12 eqid 2823 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2823 . . . . . . . . . 10 (Base‘𝐴) = (Base‘𝐴)
14 simp2 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
15 simp3 1134 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
162, 13, 4, 5dmatmat 21105 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝐷𝑥 ∈ (Base‘𝐴)))
1716imp 409 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐷) → 𝑥 ∈ (Base‘𝐴))
1817adantrr 715 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → 𝑥 ∈ (Base‘𝐴))
19183ad2ant1 1129 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑥 ∈ (Base‘𝐴))
202, 12, 13, 14, 15, 19matecld 21037 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑥𝑏) ∈ (Base‘𝑅))
212, 13, 4, 5dmatmat 21105 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝐷𝑦 ∈ (Base‘𝐴)))
2221imp 409 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐷) → 𝑦 ∈ (Base‘𝐴))
2322adantrl 714 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → 𝑦 ∈ (Base‘𝐴))
24233ad2ant1 1129 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑦 ∈ (Base‘𝐴))
252, 12, 13, 14, 15, 24matecld 21037 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑦𝑏) ∈ (Base‘𝑅))
26 eqid 2823 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2712, 26crngcom 19314 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑎𝑥𝑏) ∈ (Base‘𝑅) ∧ (𝑎𝑦𝑏) ∈ (Base‘𝑅)) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2811, 20, 25, 27syl3anc 1367 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2928ifeq1d 4487 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 ) = if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 ))
3029mpoeq3dva 7233 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
311anim2i 618 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
322, 3, 4, 5dmatmul 21108 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
3331, 32sylan 582 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
34 pm3.22 462 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → (𝑦𝐷𝑥𝐷))
352, 3, 4, 5dmatmul 21108 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐷𝑥𝐷)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
3631, 34, 35syl2an 597 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
3730, 33, 363eqtr4d 2868 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3837ralrimivva 3193 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3938ancoms 461 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
408subrgbas 19546 . . . . . 6 (𝐷 ∈ (SubRing‘𝐴) → 𝐷 = (Base‘𝐶))
4140eqcomd 2829 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (Base‘𝐶) = 𝐷)
42 eqid 2823 . . . . . . . . . 10 (.r𝐴) = (.r𝐴)
438, 42ressmulr 16627 . . . . . . . . 9 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
4443eqcomd 2829 . . . . . . . 8 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐶) = (.r𝐴))
4544oveqd 7175 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
4644oveqd 7175 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (𝑦(.r𝐶)𝑥) = (𝑦(.r𝐴)𝑥))
4745, 46eqeq12d 2839 . . . . . 6 (𝐷 ∈ (SubRing‘𝐴) → ((𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4841, 47raleqbidv 3403 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4941, 48raleqbidv 3403 . . . 4 (𝐷 ∈ (SubRing‘𝐴) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
507, 49syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5139, 50mpbird 259 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
52 eqid 2823 . . 3 (Base‘𝐶) = (Base‘𝐶)
53 eqid 2823 . . 3 (.r𝐶) = (.r𝐶)
5452, 53iscrng2 19315 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
5510, 51, 54sylanbrc 585 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  ifcif 4469  cfv 6357  (class class class)co 7158  cmpo 7160  Fincfn 8511  Basecbs 16485  s cress 16486  .rcmulr 16568  0gc0g 16715  Ringcrg 19299  CRingccrg 19300  SubRingcsubrg 19533   Mat cmat 21018   DMat cdmat 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-0g 16717  df-gsum 16718  df-prds 16723  df-pws 16725  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-subrg 19535  df-lmod 19638  df-lss 19706  df-sra 19946  df-rgmod 19947  df-dsmm 20878  df-frlm 20893  df-mamu 20997  df-mat 21019  df-dmat 21101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator