HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdsl3 Structured version   Visualization version   GIF version

Theorem dmdsl3 30095
Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdsl3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)

Proof of Theorem dmdsl3
StepHypRef Expression
1 dmdi 30082 . . . . . 6 (((𝐵C𝐴C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
21exp32 423 . . . . 5 ((𝐵C𝐴C𝐶C ) → (𝐵 𝑀* 𝐴 → (𝐴𝐶 → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))))
323com12 1119 . . . 4 ((𝐴C𝐵C𝐶C ) → (𝐵 𝑀* 𝐴 → (𝐴𝐶 → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))))
43imp32 421 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
543adantr3 1167 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
6 chjcom 29286 . . . . . 6 ((𝐴C𝐵C ) → (𝐴 𝐵) = (𝐵 𝐴))
76ineq2d 4192 . . . . 5 ((𝐴C𝐵C ) → (𝐶 ∩ (𝐴 𝐵)) = (𝐶 ∩ (𝐵 𝐴)))
873adant3 1128 . . . 4 ((𝐴C𝐵C𝐶C ) → (𝐶 ∩ (𝐴 𝐵)) = (𝐶 ∩ (𝐵 𝐴)))
9 df-ss 3955 . . . . 5 (𝐶 ⊆ (𝐴 𝐵) ↔ (𝐶 ∩ (𝐴 𝐵)) = 𝐶)
109biimpi 218 . . . 4 (𝐶 ⊆ (𝐴 𝐵) → (𝐶 ∩ (𝐴 𝐵)) = 𝐶)
118, 10sylan9req 2880 . . 3 (((𝐴C𝐵C𝐶C ) ∧ 𝐶 ⊆ (𝐴 𝐵)) → (𝐶 ∩ (𝐵 𝐴)) = 𝐶)
12113ad2antr3 1186 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → (𝐶 ∩ (𝐵 𝐴)) = 𝐶)
135, 12eqtrd 2859 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  cin 3938  wss 3939   class class class wbr 5069  (class class class)co 7159   C cch 28709   chj 28713   𝑀* cdmd 28747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-hilex 28779
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-sh 28987  df-ch 29001  df-chj 29090  df-dmd 30061
This theorem is referenced by:  mdslle1i  30097  mdslj1i  30099  mdslj2i  30100  mdslmd1lem1  30105
  Copyright terms: Public domain W3C validator