MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmgmdivn0 Structured version   Visualization version   GIF version

Theorem dmgmdivn0 24671
Description: Lemma for lgamf 24685. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
dmgmn0.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
dmgmdivn0.a (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
dmgmdivn0 (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0)

Proof of Theorem dmgmdivn0
StepHypRef Expression
1 dmgmn0.a . . . . 5 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
21eldifad 3571 . . . 4 (𝜑𝐴 ∈ ℂ)
3 dmgmdivn0.a . . . . 5 (𝜑𝑀 ∈ ℕ)
43nncnd 10988 . . . 4 (𝜑𝑀 ∈ ℂ)
53nnne0d 11017 . . . 4 (𝜑𝑀 ≠ 0)
62, 4, 4, 5divdird 10791 . . 3 (𝜑 → ((𝐴 + 𝑀) / 𝑀) = ((𝐴 / 𝑀) + (𝑀 / 𝑀)))
74, 5dividd 10751 . . . 4 (𝜑 → (𝑀 / 𝑀) = 1)
87oveq2d 6626 . . 3 (𝜑 → ((𝐴 / 𝑀) + (𝑀 / 𝑀)) = ((𝐴 / 𝑀) + 1))
96, 8eqtrd 2655 . 2 (𝜑 → ((𝐴 + 𝑀) / 𝑀) = ((𝐴 / 𝑀) + 1))
102, 4addcld 10011 . . 3 (𝜑 → (𝐴 + 𝑀) ∈ ℂ)
113nnnn0d 11303 . . . 4 (𝜑𝑀 ∈ ℕ0)
12 dmgmaddn0 24666 . . . 4 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ 𝑀 ∈ ℕ0) → (𝐴 + 𝑀) ≠ 0)
131, 11, 12syl2anc 692 . . 3 (𝜑 → (𝐴 + 𝑀) ≠ 0)
1410, 4, 13, 5divne0d 10769 . 2 (𝜑 → ((𝐴 + 𝑀) / 𝑀) ≠ 0)
159, 14eqnetrrd 2858 1 (𝜑 → ((𝐴 / 𝑀) + 1) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  wne 2790  cdif 3556  (class class class)co 6610  cc 9886  0cc0 9888  1c1 9889   + caddc 9891   / cdiv 10636  cn 10972  0cn0 11244  cz 11329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-n0 11245  df-z 11330
This theorem is referenced by:  lgamgulmlem2  24673  lgamgulmlem3  24674  lgamgulmlem5  24676  lgamgulmlem6  24677  lgamgulm2  24679  lgamcvg2  24698  gamcvg  24699  gamcvg2lem  24702  regamcl  24704  iprodgam  31371
  Copyright terms: Public domain W3C validator