Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmiin Structured version   Visualization version   GIF version

Theorem dmiin 5401
 Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
dmiin dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵

Proof of Theorem dmiin
StepHypRef Expression
1 nfii1 4583 . . . 4 𝑥 𝑥𝐴 𝐵
21nfdm 5399 . . 3 𝑥dom 𝑥𝐴 𝐵
32ssiinf 4601 . 2 (dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵 ↔ ∀𝑥𝐴 dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
4 iinss2 4604 . . 3 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
5 dmss 5355 . . 3 ( 𝑥𝐴 𝐵𝐵 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
64, 5syl 17 . 2 (𝑥𝐴 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
73, 6mprgbir 2956 1 dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 2030   ⊆ wss 3607  ∩ ciin 4553  dom cdm 5143 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-iin 4555  df-br 4686  df-dm 5153 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator