MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dminss Structured version   Visualization version   GIF version

Theorem dminss 5451
Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising." (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
dminss (dom 𝑅𝐴) ⊆ (𝑅 “ (𝑅𝐴))

Proof of Theorem dminss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.8a 2038 . . . . . . 7 ((𝑥𝐴𝑥𝑅𝑦) → ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
21ancoms 467 . . . . . 6 ((𝑥𝑅𝑦𝑥𝐴) → ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
3 vex 3175 . . . . . . 7 𝑦 ∈ V
43elima2 5377 . . . . . 6 (𝑦 ∈ (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝑦))
52, 4sylibr 222 . . . . 5 ((𝑥𝑅𝑦𝑥𝐴) → 𝑦 ∈ (𝑅𝐴))
6 simpl 471 . . . . . 6 ((𝑥𝑅𝑦𝑥𝐴) → 𝑥𝑅𝑦)
7 vex 3175 . . . . . . 7 𝑥 ∈ V
83, 7brcnv 5214 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
96, 8sylibr 222 . . . . 5 ((𝑥𝑅𝑦𝑥𝐴) → 𝑦𝑅𝑥)
105, 9jca 552 . . . 4 ((𝑥𝑅𝑦𝑥𝐴) → (𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
1110eximi 1751 . . 3 (∃𝑦(𝑥𝑅𝑦𝑥𝐴) → ∃𝑦(𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
127eldm 5229 . . . . 5 (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦)
1312anbi1i 726 . . . 4 ((𝑥 ∈ dom 𝑅𝑥𝐴) ↔ (∃𝑦 𝑥𝑅𝑦𝑥𝐴))
14 elin 3757 . . . 4 (𝑥 ∈ (dom 𝑅𝐴) ↔ (𝑥 ∈ dom 𝑅𝑥𝐴))
15 19.41v 1900 . . . 4 (∃𝑦(𝑥𝑅𝑦𝑥𝐴) ↔ (∃𝑦 𝑥𝑅𝑦𝑥𝐴))
1613, 14, 153bitr4i 290 . . 3 (𝑥 ∈ (dom 𝑅𝐴) ↔ ∃𝑦(𝑥𝑅𝑦𝑥𝐴))
177elima2 5377 . . 3 (𝑥 ∈ (𝑅 “ (𝑅𝐴)) ↔ ∃𝑦(𝑦 ∈ (𝑅𝐴) ∧ 𝑦𝑅𝑥))
1811, 16, 173imtr4i 279 . 2 (𝑥 ∈ (dom 𝑅𝐴) → 𝑥 ∈ (𝑅 “ (𝑅𝐴)))
1918ssriv 3571 1 (dom 𝑅𝐴) ⊆ (𝑅 “ (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wa 382  wex 1694  wcel 1976  cin 3538  wss 3539   class class class wbr 4577  ccnv 5026  dom cdm 5027  cima 5030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pr 4827
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-xp 5033  df-cnv 5035  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040
This theorem is referenced by:  lmhmlsp  18818  cnclsi  20833  kgencn3  21118  kqsat  21291  kqcldsat  21293  cfilucfil  22121
  Copyright terms: Public domain W3C validator