MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmiun Structured version   Visualization version   GIF version

Theorem dmiun 5322
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
dmiun dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵

Proof of Theorem dmiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3220 . . . 4 (∃𝑥𝐴𝑧𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑧𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
2 vex 3198 . . . . . 6 𝑦 ∈ V
32eldm2 5311 . . . . 5 (𝑦 ∈ dom 𝐵 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐵)
43rexbii 3037 . . . 4 (∃𝑥𝐴 𝑦 ∈ dom 𝐵 ↔ ∃𝑥𝐴𝑧𝑦, 𝑧⟩ ∈ 𝐵)
5 eliun 4515 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
65exbii 1772 . . . 4 (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑧𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
71, 4, 63bitr4ri 293 . . 3 (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝐵)
82eldm2 5311 . . 3 (𝑦 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵)
9 eliun 4515 . . 3 (𝑦 𝑥𝐴 dom 𝐵 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝐵)
107, 8, 93bitr4i 292 . 2 (𝑦 ∈ dom 𝑥𝐴 𝐵𝑦 𝑥𝐴 dom 𝐵)
1110eqriv 2617 1 dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1481  wex 1702  wcel 1988  wrex 2910  cop 4174   ciun 4511  dom cdm 5104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-iun 4513  df-br 4645  df-dm 5114
This theorem is referenced by:  dprd2d2  18424  esum2d  30129  iunrelexp0  37813
  Copyright terms: Public domain W3C validator