MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmressnsn Structured version   Visualization version   GIF version

Theorem dmressnsn 5888
Description: The domain of a restriction to a singleton is a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Assertion
Ref Expression
dmressnsn (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴})

Proof of Theorem dmressnsn
StepHypRef Expression
1 dmres 5869 . 2 dom (𝐹 ↾ {𝐴}) = ({𝐴} ∩ dom 𝐹)
2 snssi 4734 . . 3 (𝐴 ∈ dom 𝐹 → {𝐴} ⊆ dom 𝐹)
3 df-ss 3951 . . 3 ({𝐴} ⊆ dom 𝐹 ↔ ({𝐴} ∩ dom 𝐹) = {𝐴})
42, 3sylib 220 . 2 (𝐴 ∈ dom 𝐹 → ({𝐴} ∩ dom 𝐹) = {𝐴})
51, 4syl5eq 2868 1 (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cin 3934  wss 3935  {csn 4560  dom cdm 5549  cres 5551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-xp 5555  df-dm 5559  df-res 5561
This theorem is referenced by:  eldmressnsn  5889  funcoressn  43271  funressnfv  43272
  Copyright terms: Public domain W3C validator