MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmrnssfld Structured version   Visualization version   GIF version

Theorem dmrnssfld 5840
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
Assertion
Ref Expression
dmrnssfld (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴

Proof of Theorem dmrnssfld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3497 . . . . 5 𝑥 ∈ V
21eldm2 5769 . . . 4 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
31prid1 4697 . . . . . 6 𝑥 ∈ {𝑥, 𝑦}
4 vex 3497 . . . . . . . . . 10 𝑦 ∈ V
51, 4uniop 5404 . . . . . . . . 9 𝑥, 𝑦⟩ = {𝑥, 𝑦}
61, 4uniopel 5405 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥, 𝑦⟩ ∈ 𝐴)
75, 6eqeltrrid 2918 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ∈ 𝐴)
8 elssuni 4867 . . . . . . . 8 ({𝑥, 𝑦} ∈ 𝐴 → {𝑥, 𝑦} ⊆ 𝐴)
97, 8syl 17 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ⊆ 𝐴)
109sseld 3965 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 𝐴))
113, 10mpi 20 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 𝐴)
1211exlimiv 1927 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥 𝐴)
132, 12sylbi 219 . . 3 (𝑥 ∈ dom 𝐴𝑥 𝐴)
1413ssriv 3970 . 2 dom 𝐴 𝐴
154elrn2 5820 . . . 4 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
164prid2 4698 . . . . . 6 𝑦 ∈ {𝑥, 𝑦}
179sseld 3965 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 𝐴))
1816, 17mpi 20 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 𝐴)
1918exlimiv 1927 . . . 4 (∃𝑥𝑥, 𝑦⟩ ∈ 𝐴𝑦 𝐴)
2015, 19sylbi 219 . . 3 (𝑦 ∈ ran 𝐴𝑦 𝐴)
2120ssriv 3970 . 2 ran 𝐴 𝐴
2214, 21unssi 4160 1 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wex 1776  wcel 2110  cun 3933  wss 3935  {cpr 4568  cop 4572   cuni 4837  dom cdm 5554  ran crn 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-cnv 5562  df-dm 5564  df-rn 5565
This theorem is referenced by:  relfld  6125  relcoi2  6127  dmexg  7612  rnexg  7613  wundm  10149  wunrn  10150  relexpdm  14401  relexprn  14405  relexpfld  14407  psdmrn  17816  dirdm  17843  dirge  17846  tailf  33723  filnetlem3  33728
  Copyright terms: Public domain W3C validator