Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtpos Structured version   Visualization version   GIF version

Theorem dmtpos 7349
 Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dmtpos (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)

Proof of Theorem dmtpos
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nelxp 5133 . . . . 5 ¬ ∅ ∈ (V × V)
2 ssel 3589 . . . . 5 (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V)))
31, 2mtoi 190 . . . 4 (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹)
4 df-rel 5111 . . . 4 (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V))
5 reldmtpos 7345 . . . 4 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
63, 4, 53imtr4i 281 . . 3 (Rel dom 𝐹 → Rel dom tpos 𝐹)
7 relcnv 5491 . . 3 Rel dom 𝐹
86, 7jctir 560 . 2 (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel dom 𝐹))
9 vex 3198 . . . . . 6 𝑧 ∈ V
10 brtpos 7346 . . . . . 6 (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
119, 10mp1i 13 . . . . 5 (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
1211exbidv 1848 . . . 4 (Rel dom 𝐹 → (∃𝑧𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧))
13 opex 4923 . . . . 5 𝑥, 𝑦⟩ ∈ V
1413eldm 5310 . . . 4 (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ∃𝑧𝑥, 𝑦⟩tpos 𝐹𝑧)
15 vex 3198 . . . . . 6 𝑥 ∈ V
16 vex 3198 . . . . . 6 𝑦 ∈ V
1715, 16opelcnv 5293 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom 𝐹)
18 opex 4923 . . . . . 6 𝑦, 𝑥⟩ ∈ V
1918eldm 5310 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧)
2017, 19bitri 264 . . . 4 (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧)
2112, 14, 203bitr4g 303 . . 3 (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
2221eqrelrdv2 5209 . 2 (((Rel dom tpos 𝐹 ∧ Rel dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = dom 𝐹)
238, 22mpancom 702 1 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1481  ∃wex 1702   ∈ wcel 1988  Vcvv 3195   ⊆ wss 3567  ∅c0 3907  ⟨cop 4174   class class class wbr 4644   × cxp 5102  ◡ccnv 5103  dom cdm 5104  Rel wrel 5109  tpos ctpos 7336 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-fv 5884  df-tpos 7337 This theorem is referenced by:  rntpos  7350  dftpos2  7354  dftpos3  7355  tposfn2  7359
 Copyright terms: Public domain W3C validator