MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtpos Structured version   Visualization version   GIF version

Theorem dmtpos 7898
Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dmtpos (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)

Proof of Theorem dmtpos
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nelxp 5583 . . . . 5 ¬ ∅ ∈ (V × V)
2 ssel 3960 . . . . 5 (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V)))
31, 2mtoi 201 . . . 4 (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹)
4 df-rel 5556 . . . 4 (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V))
5 reldmtpos 7894 . . . 4 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
63, 4, 53imtr4i 294 . . 3 (Rel dom 𝐹 → Rel dom tpos 𝐹)
7 relcnv 5961 . . 3 Rel dom 𝐹
86, 7jctir 523 . 2 (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel dom 𝐹))
9 vex 3497 . . . . . 6 𝑧 ∈ V
10 brtpos 7895 . . . . . 6 (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
119, 10mp1i 13 . . . . 5 (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
1211exbidv 1918 . . . 4 (Rel dom 𝐹 → (∃𝑧𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧))
13 opex 5348 . . . . 5 𝑥, 𝑦⟩ ∈ V
1413eldm 5763 . . . 4 (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ∃𝑧𝑥, 𝑦⟩tpos 𝐹𝑧)
15 vex 3497 . . . . . 6 𝑥 ∈ V
16 vex 3497 . . . . . 6 𝑦 ∈ V
1715, 16opelcnv 5746 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom 𝐹)
18 opex 5348 . . . . . 6 𝑦, 𝑥⟩ ∈ V
1918eldm 5763 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧)
2017, 19bitri 277 . . . 4 (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑥𝐹𝑧)
2112, 14, 203bitr4g 316 . . 3 (Rel dom 𝐹 → (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
2221eqrelrdv2 5662 . 2 (((Rel dom tpos 𝐹 ∧ Rel dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = dom 𝐹)
238, 22mpancom 686 1 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  Vcvv 3494  wss 3935  c0 4290  cop 4566   class class class wbr 5058   × cxp 5547  ccnv 5548  dom cdm 5549  Rel wrel 5554  tpos ctpos 7885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-fv 6357  df-tpos 7886
This theorem is referenced by:  rntpos  7899  dftpos2  7903  dftpos3  7904  tposfn2  7908
  Copyright terms: Public domain W3C validator