MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtrclfv Structured version   Visualization version   GIF version

Theorem dmtrclfv 13803
Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
dmtrclfv (𝑅𝑉 → dom (t+‘𝑅) = dom 𝑅)

Proof of Theorem dmtrclfv
StepHypRef Expression
1 trclfvub 13792 . . . 4 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
2 dmss 5355 . . . 4 ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → dom (t+‘𝑅) ⊆ dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2syl 17 . . 3 (𝑅𝑉 → dom (t+‘𝑅) ⊆ dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4 dmun 5363 . . . 4 dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 ∪ dom (dom 𝑅 × ran 𝑅))
5 dm0rn0 5374 . . . . . . 7 (dom 𝑅 = ∅ ↔ ran 𝑅 = ∅)
6 xpeq1 5157 . . . . . . . . . 10 (dom 𝑅 = ∅ → (dom 𝑅 × ran 𝑅) = (∅ × ran 𝑅))
7 0xp 5233 . . . . . . . . . 10 (∅ × ran 𝑅) = ∅
86, 7syl6eq 2701 . . . . . . . . 9 (dom 𝑅 = ∅ → (dom 𝑅 × ran 𝑅) = ∅)
98dmeqd 5358 . . . . . . . 8 (dom 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom ∅)
10 dm0 5371 . . . . . . . . 9 dom ∅ = ∅
1110a1i 11 . . . . . . . 8 (dom 𝑅 = ∅ → dom ∅ = ∅)
12 eqcom 2658 . . . . . . . . 9 (dom 𝑅 = ∅ ↔ ∅ = dom 𝑅)
1312biimpi 206 . . . . . . . 8 (dom 𝑅 = ∅ → ∅ = dom 𝑅)
149, 11, 133eqtrd 2689 . . . . . . 7 (dom 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
155, 14sylbir 225 . . . . . 6 (ran 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
16 dmxp 5376 . . . . . 6 (ran 𝑅 ≠ ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
1715, 16pm2.61ine 2906 . . . . 5 dom (dom 𝑅 × ran 𝑅) = dom 𝑅
1817uneq2i 3797 . . . 4 (dom 𝑅 ∪ dom (dom 𝑅 × ran 𝑅)) = (dom 𝑅 ∪ dom 𝑅)
19 unidm 3789 . . . 4 (dom 𝑅 ∪ dom 𝑅) = dom 𝑅
204, 18, 193eqtri 2677 . . 3 dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = dom 𝑅
213, 20syl6sseq 3684 . 2 (𝑅𝑉 → dom (t+‘𝑅) ⊆ dom 𝑅)
22 trclfvlb 13793 . . 3 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
23 dmss 5355 . . 3 (𝑅 ⊆ (t+‘𝑅) → dom 𝑅 ⊆ dom (t+‘𝑅))
2422, 23syl 17 . 2 (𝑅𝑉 → dom 𝑅 ⊆ dom (t+‘𝑅))
2521, 24eqssd 3653 1 (𝑅𝑉 → dom (t+‘𝑅) = dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  cun 3605  wss 3607  c0 3948   × cxp 5141  dom cdm 5143  ran crn 5144  cfv 5926  t+ctcl 13770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-iota 5889  df-fun 5928  df-fv 5934  df-trcl 13772
This theorem is referenced by:  rntrclfvRP  38340
  Copyright terms: Public domain W3C validator