Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibnd Structured version   Visualization version   GIF version

Theorem dnibnd 33832
Description: The "distance to nearest integer" function is 1-Lipschitz continuous, i.e., is a short map. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibnd.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibnd.2 (𝜑𝐴 ∈ ℝ)
dnibnd.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibnd (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibnd
StepHypRef Expression
1 dnibnd.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 dnibnd.2 . . . 4 (𝜑𝐴 ∈ ℝ)
32adantr 483 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
4 dnibnd.3 . . . 4 (𝜑𝐵 ∈ ℝ)
54adantr 483 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
6 simpr 487 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
71, 3, 5, 6dnibndlem13 33831 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
81, 4dnicld2 33814 . . . . . 6 (𝜑 → (𝑇𝐵) ∈ ℝ)
98recnd 10671 . . . . 5 (𝜑 → (𝑇𝐵) ∈ ℂ)
101, 2dnicld2 33814 . . . . . 6 (𝜑 → (𝑇𝐴) ∈ ℝ)
1110recnd 10671 . . . . 5 (𝜑 → (𝑇𝐴) ∈ ℂ)
129, 11abssubd 14815 . . . 4 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) = (abs‘((𝑇𝐴) − (𝑇𝐵))))
1312adantr 483 . . 3 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) = (abs‘((𝑇𝐴) − (𝑇𝐵))))
144adantr 483 . . . . 5 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐵 ∈ ℝ)
152adantr 483 . . . . 5 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐴 ∈ ℝ)
16 simpr 487 . . . . 5 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2))))
171, 14, 15, 16dnibndlem13 33831 . . . 4 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐴) − (𝑇𝐵))) ≤ (abs‘(𝐴𝐵)))
182recnd 10671 . . . . . 6 (𝜑𝐴 ∈ ℂ)
194recnd 10671 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2018, 19abssubd 14815 . . . . 5 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
2120adantr 483 . . . 4 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
2217, 21breqtrd 5094 . . 3 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐴) − (𝑇𝐵))) ≤ (abs‘(𝐵𝐴)))
2313, 22eqbrtrd 5090 . 2 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
24 halfre 11854 . . . . . 6 (1 / 2) ∈ ℝ
2524a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ ℝ)
262, 25readdcld 10672 . . . 4 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
27 reflcl 13169 . . . 4 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2826, 27syl 17 . . 3 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
294, 25readdcld 10672 . . . 4 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
30 reflcl 13169 . . . 4 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3129, 30syl 17 . . 3 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3228, 31letrid 10794 . 2 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))))
337, 23, 32mpjaodan 955 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cr 10538  1c1 10540   + caddc 10542  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  cfl 13163  abscabs 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by:  dnicn  33833  knoppndvlem11  33863
  Copyright terms: Public domain W3C validator