Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem2 Structured version   Visualization version   GIF version

Theorem dnibndlem2 32146
Description: Lemma for dnibnd 32158. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem2.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem2.2 (𝜑𝐴 ∈ ℝ)
dnibndlem2.3 (𝜑𝐵 ∈ ℝ)
dnibndlem2.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
Assertion
Ref Expression
dnibndlem2 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem2
StepHypRef Expression
1 dnibndlem2.3 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2 halfre 11198 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → (1 / 2) ∈ ℝ)
41, 3jca 554 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
5 readdcl 9971 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
64, 5syl 17 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
7 reflcl 12545 . . . . . . . . . 10 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
86, 7syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
98recnd 10020 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
101recnd 10020 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
119, 10subcld 10344 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℂ)
1211abscld 14117 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
1312recnd 10020 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
14 dnibndlem2.4 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
1514, 9eqeltrrd 2699 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
16 dnibndlem2.2 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1716recnd 10020 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1815, 17subcld 10344 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
1918abscld 14117 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
2019recnd 10020 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
2113, 20subcld 10344 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
2221abscld 14117 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
2311, 18subcld 10344 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
2423abscld 14117 . . 3 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
2510, 17subcld 10344 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
2625abscld 14117 . . 3 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
2711, 18abs2difabsd 14140 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
289, 17, 10nnncan1d 10378 . . . . . . 7 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (𝐵𝐴))
2928eqcomd 2627 . . . . . 6 (𝜑 → (𝐵𝐴) = (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
3029fveq2d 6157 . . . . 5 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3114oveq1d 6625 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐴) = ((⌊‘(𝐴 + (1 / 2))) − 𝐴))
3231oveq1d 6625 . . . . . 6 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
3332fveq2d 6157 . . . . 5 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3418, 11abssubd 14134 . . . . 5 (𝜑 → (abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3530, 33, 343eqtrd 2659 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3626leidd 10546 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ≤ (abs‘(𝐵𝐴)))
3735, 36eqbrtrrd 4642 . . 3 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘(𝐵𝐴)))
3822, 24, 26, 27, 37letrd 10146 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴)))
39 dnibndlem2.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
4039, 16, 1dnibndlem1 32145 . 2 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)) ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴))))
4138, 40mpbird 247 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  1c1 9889   + caddc 9891  cle 10027  cmin 10218   / cdiv 10636  2c2 11022  cfl 12539  abscabs 13916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-fl 12541  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918
This theorem is referenced by:  dnibndlem13  32157
  Copyright terms: Public domain W3C validator