Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem6 Structured version   Visualization version   GIF version

Theorem dnibndlem6 32136
Description: Lemma for dnibnd 32144. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem6.1 (𝜑𝐴 ∈ ℝ)
dnibndlem6.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem6 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))

Proof of Theorem dnibndlem6
StepHypRef Expression
1 dnibndlem6.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
21dnicld1 32125 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
32recnd 10015 . . . 4 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
4 dnibndlem6.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
54dnicld1 32125 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
65recnd 10015 . . . 4 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
73, 6subcld 10339 . . 3 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
87abscld 14112 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
9 halfcn 11194 . . . . . 6 (1 / 2) ∈ ℂ
109a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
113, 10subcld 10339 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2)) ∈ ℂ)
1211abscld 14112 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) ∈ ℝ)
1310, 6subcld 10339 . . . 4 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
1413abscld 14112 . . 3 (𝜑 → (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
1512, 14readdcld 10016 . 2 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) ∈ ℝ)
16 halfre 11193 . . . . . 6 (1 / 2) ∈ ℝ
1716a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ ℝ)
1817, 2jca 554 . . . 4 (𝜑 → ((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ))
19 resubcl 10292 . . . 4 (((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
2018, 19syl 17 . . 3 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
2117, 5jca 554 . . . 4 (𝜑 → ((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ))
22 resubcl 10292 . . . 4 (((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
2321, 22syl 17 . . 3 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
2420, 23readdcld 10016 . 2 (𝜑 → (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
253, 6, 103jca 1240 . . 3 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ ∧ (1 / 2) ∈ ℂ))
26 abs3dif 14008 . . 3 (((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))))
2725, 26syl 17 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))))
283, 10abssubd 14129 . . . . 5 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) = (abs‘((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))))
29 rddif2 32130 . . . . . . 7 (𝐵 ∈ ℝ → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
301, 29syl 17 . . . . . 6 (𝜑 → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3120, 30absidd 14098 . . . . 5 (𝜑 → (abs‘((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) = ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3228, 31eqtrd 2655 . . . 4 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) = ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
33 rddif2 32130 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
344, 33syl 17 . . . . 5 (𝜑 → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3523, 34absidd 14098 . . . 4 (𝜑 → (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) = ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3632, 35oveq12d 6625 . . 3 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) = (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
3715, 36eqled 10087 . 2 (𝜑 → ((abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (1 / 2))) + (abs‘((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
388, 15, 24, 27, 37letrd 10141 1 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wcel 1987   class class class wbr 4615  cfv 5849  (class class class)co 6607  cc 9881  cr 9882  0cc0 9883  1c1 9884   + caddc 9886  cle 10022  cmin 10213   / cdiv 10631  2c2 11017  cfl 12534  abscabs 13911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-inf 8296  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-fl 12536  df-seq 12745  df-exp 12804  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913
This theorem is referenced by:  dnibndlem9  32139
  Copyright terms: Public domain W3C validator