Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem7 Structured version   Visualization version   GIF version

Theorem dnibndlem7 32137
Description: Lemma for dnibnd 32144. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypothesis
Ref Expression
dnibndlem7.1 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem7 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))

Proof of Theorem dnibndlem7
StepHypRef Expression
1 dnibndlem7.1 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
2 halfre 11193 . . . . . . . . 9 (1 / 2) ∈ ℝ
32a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
41, 3jca 554 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
5 readdcl 9966 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
64, 5syl 17 . . . . . 6 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
7 reflcl 12540 . . . . . 6 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
86, 7syl 17 . . . . 5 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
98, 1jca 554 . . . 4 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ 𝐵 ∈ ℝ))
10 resubcl 10292 . . . 4 (((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℝ)
119, 10syl 17 . . 3 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℝ)
121dnicld1 32125 . . 3 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
1311leabsd 14090 . . 3 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ≤ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
1411, 12, 3, 13lesub2dd 10591 . 2 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ ((1 / 2) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
153recnd 10015 . . . 4 (𝜑 → (1 / 2) ∈ ℂ)
168recnd 10015 . . . 4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
171recnd 10015 . . . 4 (𝜑𝐵 ∈ ℂ)
1815, 16, 17subsub3d 10369 . . 3 (𝜑 → ((1 / 2) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (((1 / 2) + 𝐵) − (⌊‘(𝐵 + (1 / 2)))))
1915, 17addcomd 10185 . . . 4 (𝜑 → ((1 / 2) + 𝐵) = (𝐵 + (1 / 2)))
2019oveq1d 6622 . . 3 (𝜑 → (((1 / 2) + 𝐵) − (⌊‘(𝐵 + (1 / 2)))) = ((𝐵 + (1 / 2)) − (⌊‘(𝐵 + (1 / 2)))))
2117, 16, 15subsub3d 10369 . . . 4 (𝜑 → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) = ((𝐵 + (1 / 2)) − (⌊‘(𝐵 + (1 / 2)))))
2221eqcomd 2627 . . 3 (𝜑 → ((𝐵 + (1 / 2)) − (⌊‘(𝐵 + (1 / 2)))) = (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
2318, 20, 223eqtrd 2659 . 2 (𝜑 → ((1 / 2) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
2414, 23breqtrd 4641 1 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987   class class class wbr 4615  cfv 5849  (class class class)co 6607  cr 9882  1c1 9884   + caddc 9886  cle 10022  cmin 10213   / cdiv 10631  2c2 11017  cfl 12534  abscabs 13911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-inf 8296  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-fl 12536  df-seq 12745  df-exp 12804  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913
This theorem is referenced by:  dnibndlem9  32139
  Copyright terms: Public domain W3C validator