Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch1 Structured version   Visualization version   GIF version

Theorem dnnumch1 39651
Description: Define an enumeration of a set from a choice function; second part, it restricts to a bijection. EDITORIAL: overlaps dfac8a 9458. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch1 (𝜑 → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem dnnumch1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dnnumch.a . 2 (𝜑𝐴𝑉)
2 recsval 8042 . . . . . . 7 (𝑥 ∈ On → (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))‘𝑥) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥)))
3 dnnumch.f . . . . . . . 8 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
43fveq1i 6673 . . . . . . 7 (𝐹𝑥) = (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))‘𝑥)
53tfr1 8035 . . . . . . . . . . 11 𝐹 Fn On
6 fnfun 6455 . . . . . . . . . . 11 (𝐹 Fn On → Fun 𝐹)
75, 6ax-mp 5 . . . . . . . . . 10 Fun 𝐹
8 vex 3499 . . . . . . . . . 10 𝑥 ∈ V
9 resfunexg 6980 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
107, 8, 9mp2an 690 . . . . . . . . 9 (𝐹𝑥) ∈ V
11 rneq 5808 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑥) → ran 𝑤 = ran (𝐹𝑥))
12 df-ima 5570 . . . . . . . . . . . . 13 (𝐹𝑥) = ran (𝐹𝑥)
1311, 12syl6eqr 2876 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑥) → ran 𝑤 = (𝐹𝑥))
1413difeq2d 4101 . . . . . . . . . . 11 (𝑤 = (𝐹𝑥) → (𝐴 ∖ ran 𝑤) = (𝐴 ∖ (𝐹𝑥)))
1514fveq2d 6676 . . . . . . . . . 10 (𝑤 = (𝐹𝑥) → (𝐺‘(𝐴 ∖ ran 𝑤)) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
16 rneq 5808 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → ran 𝑧 = ran 𝑤)
1716difeq2d 4101 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐴 ∖ ran 𝑧) = (𝐴 ∖ ran 𝑤))
1817fveq2d 6676 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝐺‘(𝐴 ∖ ran 𝑧)) = (𝐺‘(𝐴 ∖ ran 𝑤)))
1918cbvmptv 5171 . . . . . . . . . 10 (𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))) = (𝑤 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑤)))
20 fvex 6685 . . . . . . . . . 10 (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ V
2115, 19, 20fvmpt 6770 . . . . . . . . 9 ((𝐹𝑥) ∈ V → ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
2210, 21ax-mp 5 . . . . . . . 8 ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = (𝐺‘(𝐴 ∖ (𝐹𝑥)))
233reseq1i 5851 . . . . . . . . 9 (𝐹𝑥) = (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥)
2423fveq2i 6675 . . . . . . . 8 ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥))
2522, 24eqtr3i 2848 . . . . . . 7 (𝐺‘(𝐴 ∖ (𝐹𝑥))) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥))
262, 4, 253eqtr4g 2883 . . . . . 6 (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
2726ad2antlr 725 . . . . 5 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐹𝑥) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
28 difss 4110 . . . . . . . . 9 (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴
29 elpw2g 5249 . . . . . . . . . 10 (𝐴𝑉 → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
301, 29syl 17 . . . . . . . . 9 (𝜑 → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
3128, 30mpbiri 260 . . . . . . . 8 (𝜑 → (𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴)
32 dnnumch.g . . . . . . . 8 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
33 neeq1 3080 . . . . . . . . . 10 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑦 ≠ ∅ ↔ (𝐴 ∖ (𝐹𝑥)) ≠ ∅))
34 fveq2 6672 . . . . . . . . . . 11 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝐺𝑦) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
35 id 22 . . . . . . . . . . 11 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → 𝑦 = (𝐴 ∖ (𝐹𝑥)))
3634, 35eleq12d 2909 . . . . . . . . . 10 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝐺𝑦) ∈ 𝑦 ↔ (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3733, 36imbi12d 347 . . . . . . . . 9 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦) ↔ ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
3837rspcva 3623 . . . . . . . 8 (((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦)) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3931, 32, 38syl2anc 586 . . . . . . 7 (𝜑 → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
4039adantr 483 . . . . . 6 ((𝜑𝑥 ∈ On) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
4140imp 409 . . . . 5 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))
4227, 41eqeltrd 2915 . . . 4 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))
4342ex 415 . . 3 ((𝜑𝑥 ∈ On) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
4443ralrimiva 3184 . 2 (𝜑 → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
455tz7.49c 8084 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
461, 44, 45syl2anc 586 1 (𝜑 → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  Vcvv 3496  cdif 3935  wss 3938  c0 4293  𝒫 cpw 4541  cmpt 5148  ran crn 5558  cres 5559  cima 5560  Oncon0 6193  Fun wfun 6351   Fn wfn 6352  1-1-ontowf1o 6356  cfv 6357  recscrecs 8009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-wrecs 7949  df-recs 8010
This theorem is referenced by:  dnnumch2  39652
  Copyright terms: Public domain W3C validator