Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch1 Structured version   Visualization version   GIF version

Theorem dnnumch1 37121
Description: Define an enumeration of a set from a choice function; second part, it restricts to a bijection. EDITORIAL: overlaps dfac8a 8804. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch1 (𝜑 → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem dnnumch1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dnnumch.a . 2 (𝜑𝐴𝑉)
2 recsval 7452 . . . . . . 7 (𝑥 ∈ On → (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))‘𝑥) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥)))
3 dnnumch.f . . . . . . . 8 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
43fveq1i 6154 . . . . . . 7 (𝐹𝑥) = (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))‘𝑥)
53tfr1 7445 . . . . . . . . . . 11 𝐹 Fn On
6 fnfun 5951 . . . . . . . . . . 11 (𝐹 Fn On → Fun 𝐹)
75, 6ax-mp 5 . . . . . . . . . 10 Fun 𝐹
8 vex 3192 . . . . . . . . . 10 𝑥 ∈ V
9 resfunexg 6439 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
107, 8, 9mp2an 707 . . . . . . . . 9 (𝐹𝑥) ∈ V
11 rneq 5316 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑥) → ran 𝑤 = ran (𝐹𝑥))
12 df-ima 5092 . . . . . . . . . . . . 13 (𝐹𝑥) = ran (𝐹𝑥)
1311, 12syl6eqr 2673 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑥) → ran 𝑤 = (𝐹𝑥))
1413difeq2d 3711 . . . . . . . . . . 11 (𝑤 = (𝐹𝑥) → (𝐴 ∖ ran 𝑤) = (𝐴 ∖ (𝐹𝑥)))
1514fveq2d 6157 . . . . . . . . . 10 (𝑤 = (𝐹𝑥) → (𝐺‘(𝐴 ∖ ran 𝑤)) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
16 rneq 5316 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → ran 𝑧 = ran 𝑤)
1716difeq2d 3711 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐴 ∖ ran 𝑧) = (𝐴 ∖ ran 𝑤))
1817fveq2d 6157 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝐺‘(𝐴 ∖ ran 𝑧)) = (𝐺‘(𝐴 ∖ ran 𝑤)))
1918cbvmptv 4715 . . . . . . . . . 10 (𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))) = (𝑤 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑤)))
20 fvex 6163 . . . . . . . . . 10 (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ V
2115, 19, 20fvmpt 6244 . . . . . . . . 9 ((𝐹𝑥) ∈ V → ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
2210, 21ax-mp 5 . . . . . . . 8 ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = (𝐺‘(𝐴 ∖ (𝐹𝑥)))
233reseq1i 5357 . . . . . . . . 9 (𝐹𝑥) = (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥)
2423fveq2i 6156 . . . . . . . 8 ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥))
2522, 24eqtr3i 2645 . . . . . . 7 (𝐺‘(𝐴 ∖ (𝐹𝑥))) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥))
262, 4, 253eqtr4g 2680 . . . . . 6 (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
2726ad2antlr 762 . . . . 5 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐹𝑥) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
28 difss 3720 . . . . . . . . 9 (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴
29 elpw2g 4792 . . . . . . . . . 10 (𝐴𝑉 → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
301, 29syl 17 . . . . . . . . 9 (𝜑 → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
3128, 30mpbiri 248 . . . . . . . 8 (𝜑 → (𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴)
32 dnnumch.g . . . . . . . 8 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
33 neeq1 2852 . . . . . . . . . 10 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑦 ≠ ∅ ↔ (𝐴 ∖ (𝐹𝑥)) ≠ ∅))
34 fveq2 6153 . . . . . . . . . . 11 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝐺𝑦) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
35 id 22 . . . . . . . . . . 11 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → 𝑦 = (𝐴 ∖ (𝐹𝑥)))
3634, 35eleq12d 2692 . . . . . . . . . 10 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝐺𝑦) ∈ 𝑦 ↔ (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3733, 36imbi12d 334 . . . . . . . . 9 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦) ↔ ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
3837rspcva 3296 . . . . . . . 8 (((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦)) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3931, 32, 38syl2anc 692 . . . . . . 7 (𝜑 → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
4039adantr 481 . . . . . 6 ((𝜑𝑥 ∈ On) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
4140imp 445 . . . . 5 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))
4227, 41eqeltrd 2698 . . . 4 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))
4342ex 450 . . 3 ((𝜑𝑥 ∈ On) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
4443ralrimiva 2961 . 2 (𝜑 → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
455tz7.49c 7493 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
461, 44, 45syl2anc 692 1 (𝜑 → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3189  cdif 3556  wss 3559  c0 3896  𝒫 cpw 4135  cmpt 4678  ran crn 5080  cres 5081  cima 5082  Oncon0 5687  Fun wfun 5846   Fn wfn 5847  1-1-ontowf1o 5851  cfv 5852  recscrecs 7419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-wrecs 7359  df-recs 7420
This theorem is referenced by:  dnnumch2  37122
  Copyright terms: Public domain W3C validator