Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch2 Structured version   Visualization version   GIF version

Theorem dnnumch2 37134
Description: Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch2 (𝜑𝐴 ⊆ ran 𝐹)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐺,𝑧   𝑦,𝐴,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem dnnumch2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dnnumch.f . . 3 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
2 dnnumch.a . . 3 (𝜑𝐴𝑉)
3 dnnumch.g . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
41, 2, 3dnnumch1 37133 . 2 (𝜑 → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
5 f1ofo 6111 . . . . . 6 ((𝐹𝑥):𝑥1-1-onto𝐴 → (𝐹𝑥):𝑥onto𝐴)
6 forn 6085 . . . . . 6 ((𝐹𝑥):𝑥onto𝐴 → ran (𝐹𝑥) = 𝐴)
75, 6syl 17 . . . . 5 ((𝐹𝑥):𝑥1-1-onto𝐴 → ran (𝐹𝑥) = 𝐴)
8 resss 5391 . . . . . 6 (𝐹𝑥) ⊆ 𝐹
9 rnss 5324 . . . . . 6 ((𝐹𝑥) ⊆ 𝐹 → ran (𝐹𝑥) ⊆ ran 𝐹)
108, 9mp1i 13 . . . . 5 ((𝐹𝑥):𝑥1-1-onto𝐴 → ran (𝐹𝑥) ⊆ ran 𝐹)
117, 10eqsstr3d 3625 . . . 4 ((𝐹𝑥):𝑥1-1-onto𝐴𝐴 ⊆ ran 𝐹)
1211a1i 11 . . 3 (𝜑 → ((𝐹𝑥):𝑥1-1-onto𝐴𝐴 ⊆ ran 𝐹))
1312rexlimdvw 3029 . 2 (𝜑 → (∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴𝐴 ⊆ ran 𝐹))
144, 13mpd 15 1 (𝜑𝐴 ⊆ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wne 2790  wral 2908  wrex 2909  Vcvv 3190  cdif 3557  wss 3560  c0 3897  𝒫 cpw 4136  cmpt 4683  ran crn 5085  cres 5086  Oncon0 5692  ontowfo 5855  1-1-ontowf1o 5856  cfv 5857  recscrecs 7427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-wrecs 7367  df-recs 7428
This theorem is referenced by:  dnnumch3lem  37135  dnnumch3  37136
  Copyright terms: Public domain W3C validator