MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domeng Structured version   Visualization version   GIF version

Theorem domeng 7913
Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
domeng (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem domeng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 4617 . 2 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
2 sseq2 3606 . . . 4 (𝑦 = 𝐵 → (𝑥𝑦𝑥𝐵))
32anbi2d 739 . . 3 (𝑦 = 𝐵 → ((𝐴𝑥𝑥𝑦) ↔ (𝐴𝑥𝑥𝐵)))
43exbidv 1847 . 2 (𝑦 = 𝐵 → (∃𝑥(𝐴𝑥𝑥𝑦) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
5 vex 3189 . . 3 𝑦 ∈ V
65domen 7912 . 2 (𝐴𝑦 ↔ ∃𝑥(𝐴𝑥𝑥𝑦))
71, 4, 6vtoclbg 3253 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wss 3555   class class class wbr 4613  cen 7896  cdom 7897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-dm 5084  df-rn 5085  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-en 7900  df-dom 7901
This theorem is referenced by:  undom  7992  mapdom1  8069  mapdom2  8075  domfi  8125  isfinite2  8162  unxpwdom  8438  domfin4  9077  pwfseq  9430  grudomon  9583  ufldom  21676  erdsze2lem1  30893
  Copyright terms: Public domain W3C validator