MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dominfac Structured version   Visualization version   GIF version

Theorem dominfac 9994
Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-ac 9880. See dominf 9866 for a version proved from ax-cc 9856. (Contributed by NM, 25-Mar-2007.)
Hypothesis
Ref Expression
dominfac.1 𝐴 ∈ V
Assertion
Ref Expression
dominfac ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)

Proof of Theorem dominfac
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dominfac.1 . 2 𝐴 ∈ V
2 neeq1 3078 . . . 4 (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅))
3 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
4 unieq 4848 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
53, 4sseq12d 3999 . . . 4 (𝑥 = 𝐴 → (𝑥 𝑥𝐴 𝐴))
62, 5anbi12d 632 . . 3 (𝑥 = 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ↔ (𝐴 ≠ ∅ ∧ 𝐴 𝐴)))
7 breq2 5069 . . 3 (𝑥 = 𝐴 → (ω ≼ 𝑥 ↔ ω ≼ 𝐴))
86, 7imbi12d 347 . 2 (𝑥 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ≼ 𝑥) ↔ ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)))
9 eqid 2821 . . . 4 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
10 eqid 2821 . . . 4 (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω)
119, 10, 1, 1inf3lem6 9095 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥)
12 vpwex 5277 . . . 4 𝒫 𝑥 ∈ V
1312f1dom 8530 . . 3 ((rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥 → ω ≼ 𝒫 𝑥)
14 pwfi 8818 . . . . . . 7 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
1514biimpi 218 . . . . . 6 (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin)
16 isfinite 9114 . . . . . 6 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
17 isfinite 9114 . . . . . 6 (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω)
1815, 16, 173imtr3i 293 . . . . 5 (𝑥 ≺ ω → 𝒫 𝑥 ≺ ω)
1918con3i 157 . . . 4 (¬ 𝒫 𝑥 ≺ ω → ¬ 𝑥 ≺ ω)
20 omex 9105 . . . . 5 ω ∈ V
21 domtri 9977 . . . . 5 ((ω ∈ V ∧ 𝒫 𝑥 ∈ V) → (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω))
2220, 12, 21mp2an 690 . . . 4 (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω)
23 vex 3497 . . . . 5 𝑥 ∈ V
24 domtri 9977 . . . . 5 ((ω ∈ V ∧ 𝑥 ∈ V) → (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω))
2520, 23, 24mp2an 690 . . . 4 (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω)
2619, 22, 253imtr4i 294 . . 3 (ω ≼ 𝒫 𝑥 → ω ≼ 𝑥)
2711, 13, 263syl 18 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ≼ 𝑥)
281, 8, 27vtocl 3559 1 ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  {crab 3142  Vcvv 3494  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538   cuni 4837   class class class wbr 5065  cmpt 5145  cres 5556  1-1wf1 6351  ωcom 7579  reccrdg 8044  cdom 8506  csdm 8507  Fincfn 8508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-reg 9055  ax-inf2 9103  ax-ac2 9884
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-ac 9541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator