MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dominfac Structured version   Visualization version   GIF version

Theorem dominfac 9339
Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-ac 9225. See dominf 9211 for a version proved from ax-cc 9201. (Contributed by NM, 25-Mar-2007.)
Hypothesis
Ref Expression
dominfac.1 𝐴 ∈ V
Assertion
Ref Expression
dominfac ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)

Proof of Theorem dominfac
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dominfac.1 . 2 𝐴 ∈ V
2 neeq1 2852 . . . 4 (𝑥 = 𝐴 → (𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅))
3 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
4 unieq 4410 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
53, 4sseq12d 3613 . . . 4 (𝑥 = 𝐴 → (𝑥 𝑥𝐴 𝐴))
62, 5anbi12d 746 . . 3 (𝑥 = 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ↔ (𝐴 ≠ ∅ ∧ 𝐴 𝐴)))
7 breq2 4617 . . 3 (𝑥 = 𝐴 → (ω ≼ 𝑥 ↔ ω ≼ 𝐴))
86, 7imbi12d 334 . 2 (𝑥 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ≼ 𝑥) ↔ ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)))
9 eqid 2621 . . . 4 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
10 eqid 2621 . . . 4 (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω)
119, 10, 1, 1inf3lem6 8474 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥)
12 vpwex 4809 . . . 4 𝒫 𝑥 ∈ V
1312f1dom 7921 . . 3 ((rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω):ω–1-1→𝒫 𝑥 → ω ≼ 𝒫 𝑥)
14 pwfi 8205 . . . . . . 7 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
1514biimpi 206 . . . . . 6 (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin)
16 isfinite 8493 . . . . . 6 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
17 isfinite 8493 . . . . . 6 (𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω)
1815, 16, 173imtr3i 280 . . . . 5 (𝑥 ≺ ω → 𝒫 𝑥 ≺ ω)
1918con3i 150 . . . 4 (¬ 𝒫 𝑥 ≺ ω → ¬ 𝑥 ≺ ω)
20 omex 8484 . . . . 5 ω ∈ V
21 domtri 9322 . . . . 5 ((ω ∈ V ∧ 𝒫 𝑥 ∈ V) → (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω))
2220, 12, 21mp2an 707 . . . 4 (ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω)
23 vex 3189 . . . . 5 𝑥 ∈ V
24 domtri 9322 . . . . 5 ((ω ∈ V ∧ 𝑥 ∈ V) → (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω))
2520, 23, 24mp2an 707 . . . 4 (ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω)
2619, 22, 253imtr4i 281 . . 3 (ω ≼ 𝒫 𝑥 → ω ≼ 𝑥)
2711, 13, 263syl 18 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ≼ 𝑥)
281, 8, 27vtocl 3245 1 ((𝐴 ≠ ∅ ∧ 𝐴 𝐴) → ω ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  {crab 2911  Vcvv 3186  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130   cuni 4402   class class class wbr 4613  cmpt 4673  cres 5076  1-1wf1 5844  ωcom 7012  reccrdg 7450  cdom 7897  csdm 7898  Fincfn 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-reg 8441  ax-inf2 8482  ax-ac2 9229
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-ac 8883
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator