MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domneq0 Structured version   Visualization version   GIF version

Theorem domneq0 19345
Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
domneq0.b 𝐵 = (Base‘𝑅)
domneq0.t · = (.r𝑅)
domneq0.z 0 = (0g𝑅)
Assertion
Ref Expression
domneq0 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))

Proof of Theorem domneq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1080 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑌𝐵))
2 domneq0.b . . . . . 6 𝐵 = (Base‘𝑅)
3 domneq0.t . . . . . 6 · = (.r𝑅)
4 domneq0.z . . . . . 6 0 = (0g𝑅)
52, 3, 4isdomn 19342 . . . . 5 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
65simprbi 479 . . . 4 (𝑅 ∈ Domn → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
763ad2ant1 1102 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
8 oveq1 6697 . . . . . 6 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
98eqeq1d 2653 . . . . 5 (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 ))
10 eqeq1 2655 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
1110orbi1d 739 . . . . 5 (𝑥 = 𝑋 → ((𝑥 = 0𝑦 = 0 ) ↔ (𝑋 = 0𝑦 = 0 )))
129, 11imbi12d 333 . . . 4 (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ((𝑋 · 𝑦) = 0 → (𝑋 = 0𝑦 = 0 ))))
13 oveq2 6698 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1413eqeq1d 2653 . . . . 5 (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 ))
15 eqeq1 2655 . . . . . 6 (𝑦 = 𝑌 → (𝑦 = 0𝑌 = 0 ))
1615orbi2d 738 . . . . 5 (𝑦 = 𝑌 → ((𝑋 = 0𝑦 = 0 ) ↔ (𝑋 = 0𝑌 = 0 )))
1714, 16imbi12d 333 . . . 4 (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0 → (𝑋 = 0𝑦 = 0 )) ↔ ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 ))))
1812, 17rspc2va 3354 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
191, 7, 18syl2anc 694 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
20 domnring 19344 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
21203ad2ant1 1102 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
22 simp3 1083 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
232, 3, 4ringlz 18633 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 0 · 𝑌) = 0 )
2421, 22, 23syl2anc 694 . . . 4 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ( 0 · 𝑌) = 0 )
25 oveq1 6697 . . . . 5 (𝑋 = 0 → (𝑋 · 𝑌) = ( 0 · 𝑌))
2625eqeq1d 2653 . . . 4 (𝑋 = 0 → ((𝑋 · 𝑌) = 0 ↔ ( 0 · 𝑌) = 0 ))
2724, 26syl5ibrcom 237 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 0 → (𝑋 · 𝑌) = 0 ))
28 simp2 1082 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
292, 3, 4ringrz 18634 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
3021, 28, 29syl2anc 694 . . . 4 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 0 ) = 0 )
31 oveq2 6698 . . . . 5 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
3231eqeq1d 2653 . . . 4 (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 ))
3330, 32syl5ibrcom 237 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
3427, 33jaod 394 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 = 0𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ))
3519, 34impbid 202 1 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  cfv 5926  (class class class)co 6690  Basecbs 15904  .rcmulr 15989  0gc0g 16147  Ringcrg 18593  NzRingcnzr 19305  Domncdomn 19328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-mgp 18536  df-ring 18595  df-nzr 19306  df-domn 19332
This theorem is referenced by:  domnmuln0  19346  opprdomn  19349  fidomndrnglem  19354  domnchr  19928  znidomb  19958  fta1glem2  23971  lidldomn1  42246
  Copyright terms: Public domain W3C validator