MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domneq0 Structured version   Visualization version   GIF version

Theorem domneq0 20072
Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
domneq0.b 𝐵 = (Base‘𝑅)
domneq0.t · = (.r𝑅)
domneq0.z 0 = (0g𝑅)
Assertion
Ref Expression
domneq0 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))

Proof of Theorem domneq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1146 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑌𝐵))
2 domneq0.b . . . . . 6 𝐵 = (Base‘𝑅)
3 domneq0.t . . . . . 6 · = (.r𝑅)
4 domneq0.z . . . . . 6 0 = (0g𝑅)
52, 3, 4isdomn 20069 . . . . 5 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
65simprbi 499 . . . 4 (𝑅 ∈ Domn → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
763ad2ant1 1129 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
8 oveq1 7165 . . . . . 6 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
98eqeq1d 2825 . . . . 5 (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 ))
10 eqeq1 2827 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
1110orbi1d 913 . . . . 5 (𝑥 = 𝑋 → ((𝑥 = 0𝑦 = 0 ) ↔ (𝑋 = 0𝑦 = 0 )))
129, 11imbi12d 347 . . . 4 (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ((𝑋 · 𝑦) = 0 → (𝑋 = 0𝑦 = 0 ))))
13 oveq2 7166 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1413eqeq1d 2825 . . . . 5 (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 ))
15 eqeq1 2827 . . . . . 6 (𝑦 = 𝑌 → (𝑦 = 0𝑌 = 0 ))
1615orbi2d 912 . . . . 5 (𝑦 = 𝑌 → ((𝑋 = 0𝑦 = 0 ) ↔ (𝑋 = 0𝑌 = 0 )))
1714, 16imbi12d 347 . . . 4 (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0 → (𝑋 = 0𝑦 = 0 )) ↔ ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 ))))
1812, 17rspc2va 3636 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
191, 7, 18syl2anc 586 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
20 domnring 20071 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
21203ad2ant1 1129 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
22 simp3 1134 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
232, 3, 4ringlz 19339 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 0 · 𝑌) = 0 )
2421, 22, 23syl2anc 586 . . . 4 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ( 0 · 𝑌) = 0 )
25 oveq1 7165 . . . . 5 (𝑋 = 0 → (𝑋 · 𝑌) = ( 0 · 𝑌))
2625eqeq1d 2825 . . . 4 (𝑋 = 0 → ((𝑋 · 𝑌) = 0 ↔ ( 0 · 𝑌) = 0 ))
2724, 26syl5ibrcom 249 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 0 → (𝑋 · 𝑌) = 0 ))
28 simp2 1133 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
292, 3, 4ringrz 19340 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
3021, 28, 29syl2anc 586 . . . 4 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 0 ) = 0 )
31 oveq2 7166 . . . . 5 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
3231eqeq1d 2825 . . . 4 (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 ))
3330, 32syl5ibrcom 249 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
3427, 33jaod 855 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 = 0𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ))
3519, 34impbid 214 1 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cfv 6357  (class class class)co 7158  Basecbs 16485  .rcmulr 16568  0gc0g 16715  Ringcrg 19299  NzRingcnzr 20032  Domncdomn 20055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-mgp 19242  df-ring 19301  df-nzr 20033  df-domn 20059
This theorem is referenced by:  domnmuln0  20073  opprdomn  20076  fidomndrnglem  20081  domnchr  20681  znidomb  20710  fta1glem2  24762  qsidomlem1  30967  lidldomn1  44199
  Copyright terms: Public domain W3C validator