MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domneq0 Structured version   Visualization version   GIF version

Theorem domneq0 19211
Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
domneq0.b 𝐵 = (Base‘𝑅)
domneq0.t · = (.r𝑅)
domneq0.z 0 = (0g𝑅)
Assertion
Ref Expression
domneq0 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))

Proof of Theorem domneq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1058 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑌𝐵))
2 domneq0.b . . . . . 6 𝐵 = (Base‘𝑅)
3 domneq0.t . . . . . 6 · = (.r𝑅)
4 domneq0.z . . . . . 6 0 = (0g𝑅)
52, 3, 4isdomn 19208 . . . . 5 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
65simprbi 480 . . . 4 (𝑅 ∈ Domn → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
763ad2ant1 1080 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))
8 oveq1 6612 . . . . . 6 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
98eqeq1d 2628 . . . . 5 (𝑥 = 𝑋 → ((𝑥 · 𝑦) = 0 ↔ (𝑋 · 𝑦) = 0 ))
10 eqeq1 2630 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
1110orbi1d 738 . . . . 5 (𝑥 = 𝑋 → ((𝑥 = 0𝑦 = 0 ) ↔ (𝑋 = 0𝑦 = 0 )))
129, 11imbi12d 334 . . . 4 (𝑥 = 𝑋 → (((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ((𝑋 · 𝑦) = 0 → (𝑋 = 0𝑦 = 0 ))))
13 oveq2 6613 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1413eqeq1d 2628 . . . . 5 (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 ))
15 eqeq1 2630 . . . . . 6 (𝑦 = 𝑌 → (𝑦 = 0𝑌 = 0 ))
1615orbi2d 737 . . . . 5 (𝑦 = 𝑌 → ((𝑋 = 0𝑦 = 0 ) ↔ (𝑋 = 0𝑌 = 0 )))
1714, 16imbi12d 334 . . . 4 (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0 → (𝑋 = 0𝑦 = 0 )) ↔ ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 ))))
1812, 17rspc2va 3312 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
191, 7, 18syl2anc 692 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 → (𝑋 = 0𝑌 = 0 )))
20 domnring 19210 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
21203ad2ant1 1080 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
22 simp3 1061 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
232, 3, 4ringlz 18503 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 0 · 𝑌) = 0 )
2421, 22, 23syl2anc 692 . . . 4 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ( 0 · 𝑌) = 0 )
25 oveq1 6612 . . . . 5 (𝑋 = 0 → (𝑋 · 𝑌) = ( 0 · 𝑌))
2625eqeq1d 2628 . . . 4 (𝑋 = 0 → ((𝑋 · 𝑌) = 0 ↔ ( 0 · 𝑌) = 0 ))
2724, 26syl5ibrcom 237 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 0 → (𝑋 · 𝑌) = 0 ))
28 simp2 1060 . . . . 5 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
292, 3, 4ringrz 18504 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
3021, 28, 29syl2anc 692 . . . 4 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 0 ) = 0 )
31 oveq2 6613 . . . . 5 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
3231eqeq1d 2628 . . . 4 (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 ))
3330, 32syl5ibrcom 237 . . 3 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
3427, 33jaod 395 . 2 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 = 0𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ))
3519, 34impbid 202 1 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1992  wral 2912  cfv 5850  (class class class)co 6605  Basecbs 15776  .rcmulr 15858  0gc0g 16016  Ringcrg 18463  NzRingcnzr 19171  Domncdomn 19194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-plusg 15870  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-grp 17341  df-minusg 17342  df-mgp 18406  df-ring 18465  df-nzr 19172  df-domn 19198
This theorem is referenced by:  domnmuln0  19212  opprdomn  19215  fidomndrnglem  19220  domnchr  19794  znidomb  19824  fta1glem2  23825  lidldomn1  41182
  Copyright terms: Public domain W3C validator