MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domrefg Structured version   Visualization version   GIF version

Theorem domrefg 7941
Description: Dominance is reflexive. (Contributed by NM, 18-Jun-1998.)
Assertion
Ref Expression
domrefg (𝐴𝑉𝐴𝐴)

Proof of Theorem domrefg
StepHypRef Expression
1 enrefg 7938 . 2 (𝐴𝑉𝐴𝐴)
2 endom 7933 . 2 (𝐴𝐴𝐴𝐴)
31, 2syl 17 1 (𝐴𝑉𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987   class class class wbr 4618  cen 7903  cdom 7904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-en 7907  df-dom 7908
This theorem is referenced by:  cardprclem  8756  indcardi  8815  cdadom1  8959  infdif  8982  alephexp2  9354  pwcfsdom  9356  alephom  9358
  Copyright terms: Public domain W3C validator