MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domsdomtr Structured version   Visualization version   GIF version

Theorem domsdomtr 8654
Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
domsdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domsdomtr
StepHypRef Expression
1 sdomdom 8539 . . 3 (𝐵𝐶𝐵𝐶)
2 domtr 8564 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan2 594 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simpr 487 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
5 ensym 8560 . . . . . 6 (𝐴𝐶𝐶𝐴)
6 simpl 485 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
7 endomtr 8569 . . . . . 6 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
85, 6, 7syl2anr 598 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → 𝐶𝐵)
9 domnsym 8645 . . . . 5 (𝐶𝐵 → ¬ 𝐵𝐶)
108, 9syl 17 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → ¬ 𝐵𝐶)
1110ex 415 . . 3 ((𝐴𝐵𝐵𝐶) → (𝐴𝐶 → ¬ 𝐵𝐶))
124, 11mt2d 138 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
13 brsdom 8534 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
143, 12, 13sylanbrc 585 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   class class class wbr 5068  cen 8508  cdom 8509  csdm 8510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514
This theorem is referenced by:  ensdomtr  8655  sdomtr  8657  2pwuninel  8674  card2on  9020  tskwe  9381  harval2  9428  prdom2  9434  infxpenlem  9441  alephsucdom  9507  pwsdompw  9628  infunsdom1  9637  fin34  9814  ondomon  9987  cardmin  9988  konigthlem  9992  gchpwdom  10094  gchina  10123  inar1  10199  tskord  10204  tskuni  10207  tskurn  10213  csdfil  22504  ctbssinf  34689  pibt2  34700
  Copyright terms: Public domain W3C validator