MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domsdomtr Structured version   Visualization version   GIF version

Theorem domsdomtr 8136
Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
domsdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domsdomtr
StepHypRef Expression
1 sdomdom 8025 . . 3 (𝐵𝐶𝐵𝐶)
2 domtr 8050 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan2 490 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simpr 476 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
5 ensym 8046 . . . . . 6 (𝐴𝐶𝐶𝐴)
6 simpl 472 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
7 endomtr 8055 . . . . . 6 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
85, 6, 7syl2anr 494 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → 𝐶𝐵)
9 domnsym 8127 . . . . 5 (𝐶𝐵 → ¬ 𝐵𝐶)
108, 9syl 17 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → ¬ 𝐵𝐶)
1110ex 449 . . 3 ((𝐴𝐵𝐵𝐶) → (𝐴𝐶 → ¬ 𝐵𝐶))
124, 11mt2d 131 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
13 brsdom 8020 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
143, 12, 13sylanbrc 699 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   class class class wbr 4685  cen 7994  cdom 7995  csdm 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000
This theorem is referenced by:  ensdomtr  8137  sdomtr  8139  2pwuninel  8156  card2on  8500  tskwe  8814  harval2  8861  prdom2  8867  infxpenlem  8874  alephsucdom  8940  pwsdompw  9064  infunsdom1  9073  fin34  9250  ondomon  9423  cardmin  9424  konigthlem  9428  gchpwdom  9530  gchina  9559  inar1  9635  tskord  9640  tskuni  9643  tskurn  9649  csdfil  21745
  Copyright terms: Public domain W3C validator