MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssex2 Structured version   Visualization version   GIF version

Theorem domssex2 8064
Description: A corollary of disjenex 8062. If 𝐹 is an injection from 𝐴 to 𝐵 then there is a right inverse 𝑔 of 𝐹 from 𝐵 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domssex2 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ∃𝑔(𝑔:𝐵1-1→V ∧ (𝑔𝐹) = ( I ↾ 𝐴)))
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔   𝑔,𝐹
Allowed substitution hints:   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem domssex2
StepHypRef Expression
1 f1f 6058 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fex2 7068 . . . . 5 ((𝐹:𝐴𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
31, 2syl3an1 1356 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
4 f1stres 7135 . . . . . 6 (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})⟶(𝐵 ∖ ran 𝐹)
54a1i 11 . . . . 5 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})⟶(𝐵 ∖ ran 𝐹))
6 difexg 4768 . . . . . . 7 (𝐵𝑊 → (𝐵 ∖ ran 𝐹) ∈ V)
763ad2ant3 1082 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐵 ∖ ran 𝐹) ∈ V)
8 snex 4869 . . . . . 6 {𝒫 ran 𝐴} ∈ V
9 xpexg 6913 . . . . . 6 (((𝐵 ∖ ran 𝐹) ∈ V ∧ {𝒫 ran 𝐴} ∈ V) → ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}) ∈ V)
107, 8, 9sylancl 693 . . . . 5 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}) ∈ V)
11 fex2 7068 . . . . 5 (((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})⟶(𝐵 ∖ ran 𝐹) ∧ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}) ∈ V ∧ (𝐵 ∖ ran 𝐹) ∈ V) → (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ∈ V)
125, 10, 7, 11syl3anc 1323 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ∈ V)
13 unexg 6912 . . . 4 ((𝐹 ∈ V ∧ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ∈ V) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∈ V)
143, 12, 13syl2anc 692 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∈ V)
15 cnvexg 7059 . . 3 ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∈ V → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∈ V)
1614, 15syl 17 . 2 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∈ V)
17 eqid 2621 . . . . . . 7 (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
1817domss2 8063 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∧ 𝐴 ⊆ ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∧ ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴)))
1918simp1d 1071 . . . . 5 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))))
20 f1of1 6093 . . . . 5 ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))))
2119, 20syl 17 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))))
22 ssv 3604 . . . 4 ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ⊆ V
23 f1ss 6063 . . . 4 (((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∧ ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ⊆ V) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→V)
2421, 22, 23sylancl 693 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→V)
2518simp3d 1073 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴))
2624, 25jca 554 . 2 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→V ∧ ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴)))
27 f1eq1 6053 . . . 4 (𝑔 = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) → (𝑔:𝐵1-1→V ↔ (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→V))
28 coeq1 5239 . . . . 5 (𝑔 = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) → (𝑔𝐹) = ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹))
2928eqeq1d 2623 . . . 4 (𝑔 = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) → ((𝑔𝐹) = ( I ↾ 𝐴) ↔ ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴)))
3027, 29anbi12d 746 . . 3 (𝑔 = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) → ((𝑔:𝐵1-1→V ∧ (𝑔𝐹) = ( I ↾ 𝐴)) ↔ ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→V ∧ ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴))))
3130spcegv 3280 . 2 ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∈ V → (((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→V ∧ ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴)) → ∃𝑔(𝑔:𝐵1-1→V ∧ (𝑔𝐹) = ( I ↾ 𝐴))))
3216, 26, 31sylc 65 1 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ∃𝑔(𝑔:𝐵1-1→V ∧ (𝑔𝐹) = ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  Vcvv 3186  cdif 3552  cun 3553  wss 3555  𝒫 cpw 4130  {csn 4148   cuni 4402   I cid 4984   × cxp 5072  ccnv 5073  ran crn 5075  cres 5076  ccom 5078  wf 5843  1-1wf1 5844  1-1-ontowf1o 5846  1st c1st 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-1st 7113  df-2nd 7114  df-en 7900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator