MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtri2 Structured version   Visualization version   GIF version

Theorem domtri2 8775
Description: Trichotomy of dominance for numerable sets (does not use AC). (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
domtri2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem domtri2
StepHypRef Expression
1 carddom2 8763 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
2 cardon 8730 . . . 4 (card‘𝐴) ∈ On
3 cardon 8730 . . . 4 (card‘𝐵) ∈ On
4 ontri1 5726 . . . 4 (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)))
52, 3, 4mp2an 707 . . 3 ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))
6 cardsdom2 8774 . . . . 5 ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) ↔ 𝐵𝐴))
76ancoms 469 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) ↔ 𝐵𝐴))
87notbid 308 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (¬ (card‘𝐵) ∈ (card‘𝐴) ↔ ¬ 𝐵𝐴))
95, 8syl5bb 272 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ 𝐵𝐴))
101, 9bitr3d 270 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wcel 1987  wss 3560   class class class wbr 4623  dom cdm 5084  Oncon0 5692  cfv 5857  cdom 7913  csdm 7914  cardccrd 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-ord 5695  df-on 5696  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-card 8725
This theorem is referenced by:  fidomtri  8779  harsdom  8781  infdif  8991  infdif2  8992  infunsdom1  8995  infunsdom  8996  infxp  8997  domtri  9338  canthp1lem2  9435  pwfseqlem4a  9443  pwfseqlem4  9444  gchaleph  9453  numinfctb  37193
  Copyright terms: Public domain W3C validator