MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriord Structured version   Visualization version   GIF version

Theorem domtriord 8655
Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.)
Assertion
Ref Expression
domtriord ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem domtriord
StepHypRef Expression
1 sbth 8629 . . . . 5 ((𝐵𝐴𝐴𝐵) → 𝐵𝐴)
21expcom 416 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐵𝐴))
32a1i 11 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐵𝐴𝐵𝐴)))
4 iman 404 . . . 4 ((𝐵𝐴𝐵𝐴) ↔ ¬ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
5 brsdom 8524 . . . 4 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
64, 5xchbinxr 337 . . 3 ((𝐵𝐴𝐵𝐴) ↔ ¬ 𝐵𝐴)
73, 6syl6ib 253 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → ¬ 𝐵𝐴))
8 onelss 6226 . . . . . . . . . 10 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
9 ssdomg 8547 . . . . . . . . . 10 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
108, 9syld 47 . . . . . . . . 9 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
1110adantl 484 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
1211con3d 155 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → ¬ 𝐴𝐵))
13 ontri1 6218 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1413ancoms 461 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1512, 14sylibrd 261 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
16 ssdomg 8547 . . . . . . 7 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
1716adantr 483 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴𝐵𝐴))
1815, 17syld 47 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
19 ensym 8550 . . . . . . 7 (𝐵𝐴𝐴𝐵)
20 endom 8528 . . . . . . 7 (𝐴𝐵𝐴𝐵)
2119, 20syl 17 . . . . . 6 (𝐵𝐴𝐴𝐵)
2221con3i 157 . . . . 5 𝐴𝐵 → ¬ 𝐵𝐴)
2318, 22jca2 516 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → (𝐵𝐴 ∧ ¬ 𝐵𝐴)))
2423, 5syl6ibr 254 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
2524con1d 147 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵𝐴𝐴𝐵))
267, 25impbid 214 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2108  wss 3934   class class class wbr 5057  Oncon0 6184  cen 8498  cdom 8499  csdm 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504
This theorem is referenced by:  sdomel  8656  cardsdomel  9395  alephord  9493  alephsucdom  9497  alephdom2  9505
  Copyright terms: Public domain W3C validator