![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp3mul10 | Structured version Visualization version GIF version |
Description: Multiply by 10 a decimal expansion with 3 digits. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
Ref | Expression |
---|---|
dp3mul10.a | ⊢ 𝐴 ∈ ℕ0 |
dp3mul10.b | ⊢ 𝐵 ∈ ℕ0 |
dp3mul10.c | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
dp3mul10 | ⊢ ((𝐴._𝐵𝐶) · ;10) = (;𝐴𝐵.𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp3mul10.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | dp3mul10.b | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 11341 | . . . 4 ⊢ 𝐵 ∈ ℝ |
4 | dp3mul10.c | . . . 4 ⊢ 𝐶 ∈ ℝ | |
5 | dp2cl 29715 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → _𝐵𝐶 ∈ ℝ) | |
6 | 3, 4, 5 | mp2an 708 | . . 3 ⊢ _𝐵𝐶 ∈ ℝ |
7 | 1, 6 | dpmul10 29731 | . 2 ⊢ ((𝐴._𝐵𝐶) · ;10) = ;𝐴_𝐵𝐶 |
8 | dfdec10 11535 | . 2 ⊢ ;𝐴_𝐵𝐶 = ((;10 · 𝐴) + _𝐵𝐶) | |
9 | 10nn 11552 | . . . . . . 7 ⊢ ;10 ∈ ℕ | |
10 | 9 | nncni 11068 | . . . . . 6 ⊢ ;10 ∈ ℂ |
11 | 1 | nn0cni 11342 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
12 | 10, 11 | mulcli 10083 | . . . . 5 ⊢ (;10 · 𝐴) ∈ ℂ |
13 | 3 | recni 10090 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
14 | 4 | recni 10090 | . . . . . 6 ⊢ 𝐶 ∈ ℂ |
15 | 9 | nnne0i 11093 | . . . . . 6 ⊢ ;10 ≠ 0 |
16 | 14, 10, 15 | divcli 10805 | . . . . 5 ⊢ (𝐶 / ;10) ∈ ℂ |
17 | 12, 13, 16 | addassi 10086 | . . . 4 ⊢ (((;10 · 𝐴) + 𝐵) + (𝐶 / ;10)) = ((;10 · 𝐴) + (𝐵 + (𝐶 / ;10))) |
18 | dfdec10 11535 | . . . . 5 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
19 | 18 | oveq1i 6700 | . . . 4 ⊢ (;𝐴𝐵 + (𝐶 / ;10)) = (((;10 · 𝐴) + 𝐵) + (𝐶 / ;10)) |
20 | df-dp2 29706 | . . . . 5 ⊢ _𝐵𝐶 = (𝐵 + (𝐶 / ;10)) | |
21 | 20 | oveq2i 6701 | . . . 4 ⊢ ((;10 · 𝐴) + _𝐵𝐶) = ((;10 · 𝐴) + (𝐵 + (𝐶 / ;10))) |
22 | 17, 19, 21 | 3eqtr4ri 2684 | . . 3 ⊢ ((;10 · 𝐴) + _𝐵𝐶) = (;𝐴𝐵 + (𝐶 / ;10)) |
23 | 1, 2 | deccl 11550 | . . . 4 ⊢ ;𝐴𝐵 ∈ ℕ0 |
24 | 23, 4 | dpval2 29729 | . . 3 ⊢ (;𝐴𝐵.𝐶) = (;𝐴𝐵 + (𝐶 / ;10)) |
25 | 22, 24 | eqtr4i 2676 | . 2 ⊢ ((;10 · 𝐴) + _𝐵𝐶) = (;𝐴𝐵.𝐶) |
26 | 7, 8, 25 | 3eqtri 2677 | 1 ⊢ ((𝐴._𝐵𝐶) · ;10) = (;𝐴𝐵.𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 (class class class)co 6690 ℝcr 9973 0cc0 9974 1c1 9975 + caddc 9977 · cmul 9979 / cdiv 10722 ℕ0cn0 11330 ;cdc 11531 _cdp2 29705 .cdp 29723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-dec 11532 df-dp2 29706 df-dp 29724 |
This theorem is referenced by: dpmul4 29750 |
Copyright terms: Public domain | W3C validator |