Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpadd2 Structured version   Visualization version   GIF version

 Description: Addition with one decimal, no carry. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Hypotheses
Ref Expression
dpadd2.i (𝐺 + 𝐻) = 𝐼
dpadd2.1 ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹)
Assertion
Ref Expression
dpadd2 ((𝐺.𝐴𝐵) + (𝐻.𝐶𝐷)) = (𝐼.𝐸𝐹)

StepHypRef Expression
1 dpadd2.g . . . 4 𝐺 ∈ ℕ0
2 dpadd2.a . . . . . 6 𝐴 ∈ ℕ0
32nn0rei 11341 . . . . 5 𝐴 ∈ ℝ
4 dpadd2.b . . . . . 6 𝐵 ∈ ℝ+
5 rpre 11877 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
64, 5ax-mp 5 . . . . 5 𝐵 ∈ ℝ
7 dp2cl 29715 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴𝐵 ∈ ℝ)
83, 6, 7mp2an 708 . . . 4 𝐴𝐵 ∈ ℝ
91, 8dpval2 29729 . . 3 (𝐺.𝐴𝐵) = (𝐺 + (𝐴𝐵 / 10))
10 dpadd2.h . . . 4 𝐻 ∈ ℕ0
11 dpadd2.c . . . . . 6 𝐶 ∈ ℕ0
1211nn0rei 11341 . . . . 5 𝐶 ∈ ℝ
13 dpadd2.d . . . . . 6 𝐷 ∈ ℝ+
14 rpre 11877 . . . . . 6 (𝐷 ∈ ℝ+𝐷 ∈ ℝ)
1513, 14ax-mp 5 . . . . 5 𝐷 ∈ ℝ
16 dp2cl 29715 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → 𝐶𝐷 ∈ ℝ)
1712, 15, 16mp2an 708 . . . 4 𝐶𝐷 ∈ ℝ
1810, 17dpval2 29729 . . 3 (𝐻.𝐶𝐷) = (𝐻 + (𝐶𝐷 / 10))
199, 18oveq12i 6702 . 2 ((𝐺.𝐴𝐵) + (𝐻.𝐶𝐷)) = ((𝐺 + (𝐴𝐵 / 10)) + (𝐻 + (𝐶𝐷 / 10)))
201nn0cni 11342 . . 3 𝐺 ∈ ℂ
218recni 10090 . . . 4 𝐴𝐵 ∈ ℂ
22 10nn 11552 . . . . 5 10 ∈ ℕ
2322nncni 11068 . . . 4 10 ∈ ℂ
2422nnne0i 11093 . . . 4 10 ≠ 0
2521, 23, 24divcli 10805 . . 3 (𝐴𝐵 / 10) ∈ ℂ
2610nn0cni 11342 . . 3 𝐻 ∈ ℂ
2717recni 10090 . . . 4 𝐶𝐷 ∈ ℂ
2827, 23, 24divcli 10805 . . 3 (𝐶𝐷 / 10) ∈ ℂ
2920, 25, 26, 28add4i 10298 . 2 ((𝐺 + (𝐴𝐵 / 10)) + (𝐻 + (𝐶𝐷 / 10))) = ((𝐺 + 𝐻) + ((𝐴𝐵 / 10) + (𝐶𝐷 / 10)))
30 dpadd2.i . . . 4 (𝐺 + 𝐻) = 𝐼
3121, 27, 23, 24divdiri 10820 . . . . 5 ((𝐴𝐵 + 𝐶𝐷) / 10) = ((𝐴𝐵 / 10) + (𝐶𝐷 / 10))
32 dpadd2.1 . . . . . . 7 ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹)
33 dpval 29725 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
342, 6, 33mp2an 708 . . . . . . . 8 (𝐴.𝐵) = 𝐴𝐵
35 dpval 29725 . . . . . . . . 9 ((𝐶 ∈ ℕ0𝐷 ∈ ℝ) → (𝐶.𝐷) = 𝐶𝐷)
3611, 15, 35mp2an 708 . . . . . . . 8 (𝐶.𝐷) = 𝐶𝐷
3734, 36oveq12i 6702 . . . . . . 7 ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐴𝐵 + 𝐶𝐷)
38 dpadd2.e . . . . . . . 8 𝐸 ∈ ℕ0
39 dpadd2.f . . . . . . . . 9 𝐹 ∈ ℝ+
40 rpre 11877 . . . . . . . . 9 (𝐹 ∈ ℝ+𝐹 ∈ ℝ)
4139, 40ax-mp 5 . . . . . . . 8 𝐹 ∈ ℝ
42 dpval 29725 . . . . . . . 8 ((𝐸 ∈ ℕ0𝐹 ∈ ℝ) → (𝐸.𝐹) = 𝐸𝐹)
4338, 41, 42mp2an 708 . . . . . . 7 (𝐸.𝐹) = 𝐸𝐹
4432, 37, 433eqtr3i 2681 . . . . . 6 (𝐴𝐵 + 𝐶𝐷) = 𝐸𝐹
4544oveq1i 6700 . . . . 5 ((𝐴𝐵 + 𝐶𝐷) / 10) = (𝐸𝐹 / 10)
4631, 45eqtr3i 2675 . . . 4 ((𝐴𝐵 / 10) + (𝐶𝐷 / 10)) = (𝐸𝐹 / 10)
4730, 46oveq12i 6702 . . 3 ((𝐺 + 𝐻) + ((𝐴𝐵 / 10) + (𝐶𝐷 / 10))) = (𝐼 + (𝐸𝐹 / 10))
481, 10nn0addcli 11368 . . . . 5 (𝐺 + 𝐻) ∈ ℕ0
4930, 48eqeltrri 2727 . . . 4 𝐼 ∈ ℕ0
5038nn0rei 11341 . . . . 5 𝐸 ∈ ℝ
51 dp2cl 29715 . . . . 5 ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → 𝐸𝐹 ∈ ℝ)
5250, 41, 51mp2an 708 . . . 4 𝐸𝐹 ∈ ℝ
5349, 52dpval2 29729 . . 3 (𝐼.𝐸𝐹) = (𝐼 + (𝐸𝐹 / 10))
5447, 53eqtr4i 2676 . 2 ((𝐺 + 𝐻) + ((𝐴𝐵 / 10) + (𝐶𝐷 / 10))) = (𝐼.𝐸𝐹)
5519, 29, 543eqtri 2677 1 ((𝐺.𝐴𝐵) + (𝐻.𝐶𝐷)) = (𝐼.𝐸𝐹)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1523   ∈ wcel 2030  (class class class)co 6690  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   / cdiv 10722  ℕ0cn0 11330  ;cdc 11531  ℝ+crp 11870  _cdp2 29705  .cdp 29723 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-dec 11532  df-rp 11871  df-dp2 29706  df-dp 29724 This theorem is referenced by:  hgt750lemd  30854
 Copyright terms: Public domain W3C validator