![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpexpp1 | Structured version Visualization version GIF version |
Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dpexpp1.a | ⊢ 𝐴 ∈ ℕ0 |
dpexpp1.b | ⊢ 𝐵 ∈ ℝ+ |
dpexpp1.1 | ⊢ (𝑃 + 1) = 𝑄 |
dpexpp1.p | ⊢ 𝑃 ∈ ℤ |
dpexpp1.q | ⊢ 𝑄 ∈ ℤ |
Ref | Expression |
---|---|
dpexpp1 | ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10078 | . . . . . 6 ⊢ 0 ∈ ℝ | |
2 | 10pos 11553 | . . . . . 6 ⊢ 0 < ;10 | |
3 | 1, 2 | gtneii 10187 | . . . . 5 ⊢ ;10 ≠ 0 |
4 | dpexpp1.a | . . . . . . . . . 10 ⊢ 𝐴 ∈ ℕ0 | |
5 | dpexpp1.b | . . . . . . . . . 10 ⊢ 𝐵 ∈ ℝ+ | |
6 | 4, 5 | rpdp2cl 29717 | . . . . . . . . 9 ⊢ _𝐴𝐵 ∈ ℝ+ |
7 | rpre 11877 | . . . . . . . . 9 ⊢ (_𝐴𝐵 ∈ ℝ+ → _𝐴𝐵 ∈ ℝ) | |
8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ _𝐴𝐵 ∈ ℝ |
9 | 8 | recni 10090 | . . . . . . 7 ⊢ _𝐴𝐵 ∈ ℂ |
10 | 10re 11555 | . . . . . . . . . . 11 ⊢ ;10 ∈ ℝ | |
11 | 10, 2 | pm3.2i 470 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
12 | elrp 11872 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
13 | 11, 12 | mpbir 221 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ+ |
14 | dpexpp1.p | . . . . . . . . 9 ⊢ 𝑃 ∈ ℤ | |
15 | rpexpcl 12919 | . . . . . . . . 9 ⊢ ((;10 ∈ ℝ+ ∧ 𝑃 ∈ ℤ) → (;10↑𝑃) ∈ ℝ+) | |
16 | 13, 14, 15 | mp2an 708 | . . . . . . . 8 ⊢ (;10↑𝑃) ∈ ℝ+ |
17 | rpcn 11879 | . . . . . . . 8 ⊢ ((;10↑𝑃) ∈ ℝ+ → (;10↑𝑃) ∈ ℂ) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (;10↑𝑃) ∈ ℂ |
19 | 9, 18 | mulcli 10083 | . . . . . 6 ⊢ (_𝐴𝐵 · (;10↑𝑃)) ∈ ℂ |
20 | 10nn0 11554 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
21 | 20 | nn0cni 11342 | . . . . . 6 ⊢ ;10 ∈ ℂ |
22 | 19, 21 | divcan1zi 10799 | . . . . 5 ⊢ (;10 ≠ 0 → (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃))) |
23 | 3, 22 | ax-mp 5 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃)) |
24 | 21, 3 | pm3.2i 470 | . . . . . 6 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
25 | div23 10742 | . . . . . 6 ⊢ ((_𝐴𝐵 ∈ ℂ ∧ (;10↑𝑃) ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃))) | |
26 | 9, 18, 24, 25 | mp3an 1464 | . . . . 5 ⊢ ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃)) |
27 | 26 | oveq1i 6700 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
28 | 23, 27 | eqtr3i 2675 | . . 3 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
29 | 9, 21, 3 | divcli 10805 | . . . 4 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
30 | 29, 18, 21 | mulassi 10087 | . . 3 ⊢ (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) = ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) |
31 | expp1z 12949 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10)) | |
32 | 21, 3, 14, 31 | mp3an 1464 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10) |
33 | dpexpp1.1 | . . . . . 6 ⊢ (𝑃 + 1) = 𝑄 | |
34 | 33 | oveq2i 6701 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = (;10↑𝑄) |
35 | 32, 34 | eqtr3i 2675 | . . . 4 ⊢ ((;10↑𝑃) · ;10) = (;10↑𝑄) |
36 | 35 | oveq2i 6701 | . . 3 ⊢ ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
37 | 28, 30, 36 | 3eqtri 2677 | . 2 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
38 | 4, 5 | dpval3rp 29736 | . . 3 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
39 | 38 | oveq1i 6700 | . 2 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = (_𝐴𝐵 · (;10↑𝑃)) |
40 | 0nn0 11345 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
41 | 40, 6 | dpval3rp 29736 | . . . 4 ⊢ (0._𝐴𝐵) = _0_𝐴𝐵 |
42 | 6 | dp20h 29714 | . . . 4 ⊢ _0_𝐴𝐵 = (_𝐴𝐵 / ;10) |
43 | 41, 42 | eqtri 2673 | . . 3 ⊢ (0._𝐴𝐵) = (_𝐴𝐵 / ;10) |
44 | 43 | oveq1i 6700 | . 2 ⊢ ((0._𝐴𝐵) · (;10↑𝑄)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
45 | 37, 39, 44 | 3eqtr4i 2683 | 1 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 class class class wbr 4685 (class class class)co 6690 ℂcc 9972 ℝcr 9973 0cc0 9974 1c1 9975 + caddc 9977 · cmul 9979 < clt 10112 / cdiv 10722 ℕ0cn0 11330 ℤcz 11415 ;cdc 11531 ℝ+crp 11870 ↑cexp 12900 _cdp2 29705 .cdp 29723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-rp 11871 df-seq 12842 df-exp 12901 df-dp2 29706 df-dp 29724 |
This theorem is referenced by: 0dp2dp 29745 hgt750lemd 30854 hgt750lem 30857 |
Copyright terms: Public domain | W3C validator |