![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dpjdisj | Structured version Visualization version GIF version |
Description: The two subgroups that appear in dpjval 18647 are disjoint. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjlem.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
dpjdisj.0 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
dpjdisj | ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpjfval.1 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dpjfval.2 | . . . 4 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
3 | dpjlem.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
4 | 1, 2, 3 | dpjlem 18642 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ {𝑋})) = (𝑆‘𝑋)) |
5 | 4 | ineq1d 3948 | . 2 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))) |
6 | 1, 2 | dprdf2 18598 | . . . . 5 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
7 | disjdif 4176 | . . . . . 6 ⊢ ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅ | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → ({𝑋} ∩ (𝐼 ∖ {𝑋})) = ∅) |
9 | undif2 4180 | . . . . . 6 ⊢ ({𝑋} ∪ (𝐼 ∖ {𝑋})) = ({𝑋} ∪ 𝐼) | |
10 | 3 | snssd 4477 | . . . . . . 7 ⊢ (𝜑 → {𝑋} ⊆ 𝐼) |
11 | ssequn1 3918 | . . . . . . 7 ⊢ ({𝑋} ⊆ 𝐼 ↔ ({𝑋} ∪ 𝐼) = 𝐼) | |
12 | 10, 11 | sylib 208 | . . . . . 6 ⊢ (𝜑 → ({𝑋} ∪ 𝐼) = 𝐼) |
13 | 9, 12 | syl5req 2799 | . . . . 5 ⊢ (𝜑 → 𝐼 = ({𝑋} ∪ (𝐼 ∖ {𝑋}))) |
14 | eqid 2752 | . . . . 5 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
15 | dpjdisj.0 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
16 | 6, 8, 13, 14, 15 | dmdprdsplit 18638 | . . . 4 ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ {𝑋}) ∧ 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∧ (𝐺 DProd (𝑆 ↾ {𝑋})) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∧ ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }))) |
17 | 1, 16 | mpbid 222 | . . 3 ⊢ (𝜑 → ((𝐺dom DProd (𝑆 ↾ {𝑋}) ∧ 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∧ (𝐺 DProd (𝑆 ↾ {𝑋})) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) ∧ ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 })) |
18 | 17 | simp3d 1138 | . 2 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ {𝑋})) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) |
19 | 5, 18 | eqtr3d 2788 | 1 ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ∖ cdif 3704 ∪ cun 3705 ∩ cin 3706 ⊆ wss 3707 ∅c0 4050 {csn 4313 class class class wbr 4796 dom cdm 5258 ↾ cres 5260 ‘cfv 6041 (class class class)co 6805 0gc0g 16294 Cntzccntz 17940 DProd cdprd 18584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-inf2 8703 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-of 7054 df-om 7223 df-1st 7325 df-2nd 7326 df-supp 7456 df-tpos 7513 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-map 8017 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8433 df-oi 8572 df-card 8947 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-n0 11477 df-z 11562 df-uz 11872 df-fz 12512 df-fzo 12652 df-seq 12988 df-hash 13304 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-0g 16296 df-gsum 16297 df-mre 16440 df-mrc 16441 df-acs 16443 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-mhm 17528 df-submnd 17529 df-grp 17618 df-minusg 17619 df-sbg 17620 df-mulg 17734 df-subg 17784 df-ghm 17851 df-gim 17894 df-cntz 17942 df-oppg 17968 df-lsm 18243 df-cmn 18387 df-dprd 18586 |
This theorem is referenced by: dpjf 18648 dpjidcl 18649 dpjlid 18652 dpjghm 18654 |
Copyright terms: Public domain | W3C validator |