MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjf Structured version   Visualization version   GIF version

Theorem dpjf 18437
Description: The 𝑋-th index projection is a function from the direct product to the 𝑋-th factor. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjf.3 (𝜑𝑋𝐼)
Assertion
Ref Expression
dpjf (𝜑 → (𝑃𝑋):(𝐺 DProd 𝑆)⟶(𝑆𝑋))

Proof of Theorem dpjf
StepHypRef Expression
1 eqid 2620 . . 3 (+g𝐺) = (+g𝐺)
2 eqid 2620 . . 3 (LSSum‘𝐺) = (LSSum‘𝐺)
3 eqid 2620 . . 3 (0g𝐺) = (0g𝐺)
4 eqid 2620 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
5 dpjfval.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
6 dpjfval.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
75, 6dprdf2 18387 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
8 dpjf.3 . . . 4 (𝜑𝑋𝐼)
97, 8ffvelrnd 6346 . . 3 (𝜑 → (𝑆𝑋) ∈ (SubGrp‘𝐺))
10 difssd 3730 . . . . . 6 (𝜑 → (𝐼 ∖ {𝑋}) ⊆ 𝐼)
115, 6, 10dprdres 18408 . . . . 5 (𝜑 → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ⊆ (𝐺 DProd 𝑆)))
1211simpld 475 . . . 4 (𝜑𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))
13 dprdsubg 18404 . . . 4 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑋})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
1412, 13syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))) ∈ (SubGrp‘𝐺))
155, 6, 8, 3dpjdisj 18433 . . 3 (𝜑 → ((𝑆𝑋) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))) = {(0g𝐺)})
165, 6, 8, 4dpjcntz 18432 . . 3 (𝜑 → (𝑆𝑋) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
17 eqid 2620 . . 3 (proj1𝐺) = (proj1𝐺)
181, 2, 3, 4, 9, 14, 15, 16, 17pj1f 18091 . 2 (𝜑 → ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))):((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))⟶(𝑆𝑋))
19 dpjfval.p . . . 4 𝑃 = (𝐺dProj𝑆)
205, 6, 19, 17, 8dpjval 18436 . . 3 (𝜑 → (𝑃𝑋) = ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
215, 6, 8, 2dpjlsm 18434 . . 3 (𝜑 → (𝐺 DProd 𝑆) = ((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))))
2220, 21feq12d 6020 . 2 (𝜑 → ((𝑃𝑋):(𝐺 DProd 𝑆)⟶(𝑆𝑋) ↔ ((𝑆𝑋)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋})))):((𝑆𝑋)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑋}))))⟶(𝑆𝑋)))
2318, 22mpbird 247 1 (𝜑 → (𝑃𝑋):(𝐺 DProd 𝑆)⟶(𝑆𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1481  wcel 1988  cdif 3564  wss 3567  {csn 4168   class class class wbr 4644  dom cdm 5104  cres 5106  wf 5872  cfv 5876  (class class class)co 6635  +gcplusg 15922  0gc0g 16081  SubGrpcsubg 17569  Cntzccntz 17729  LSSumclsm 18030  proj1cpj1 18031   DProd cdprd 18373  dProjcdpj 18374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-n0 11278  df-z 11363  df-uz 11673  df-fz 12312  df-fzo 12450  df-seq 12785  df-hash 13101  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-0g 16083  df-gsum 16084  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mhm 17316  df-submnd 17317  df-grp 17406  df-minusg 17407  df-sbg 17408  df-mulg 17522  df-subg 17572  df-ghm 17639  df-gim 17682  df-cntz 17731  df-oppg 17757  df-lsm 18032  df-pj1 18033  df-cmn 18176  df-dprd 18375  df-dpj 18376
This theorem is referenced by:  dpjidcl  18438  dpjghm2  18444  dchrptlem2  24971
  Copyright terms: Public domain W3C validator