MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjidcl Structured version   Visualization version   GIF version

Theorem dpjidcl 18373
Description: The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjidcl.3 (𝜑𝐴 ∈ (𝐺 DProd 𝑆))
dpjidcl.0 0 = (0g𝐺)
dpjidcl.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
Assertion
Ref Expression
dpjidcl (𝜑 → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
Distinct variable groups:   𝑥,, 0   ,𝑖,𝐺,𝑥   𝑃,,𝑥   𝜑,𝑖,𝑥   ,𝐼,𝑖,𝑥   𝑥,𝑊   𝐴,,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑()   𝐴(𝑖)   𝑃(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dpjidcl
Dummy variables 𝑘 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dpjidcl.3 . . . 4 (𝜑𝐴 ∈ (𝐺 DProd 𝑆))
2 dpjfval.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
3 dpjidcl.0 . . . . . 6 0 = (0g𝐺)
4 dpjidcl.w . . . . . 6 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
53, 4eldprd 18319 . . . . 5 (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
62, 5syl 17 . . . 4 (𝜑 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
71, 6mpbid 222 . . 3 (𝜑 → (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓)))
87simprd 479 . 2 (𝜑 → ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))
9 dpjfval.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
109adantr 481 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆)
112adantr 481 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼)
129ad2antrr 761 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺dom DProd 𝑆)
132ad2antrr 761 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → dom 𝑆 = 𝐼)
14 dpjfval.p . . . . . 6 𝑃 = (𝐺dProj𝑆)
15 simpr 477 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑥𝐼)
1612, 13, 14, 15dpjf 18372 . . . . 5 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑃𝑥):(𝐺 DProd 𝑆)⟶(𝑆𝑥))
171ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 ∈ (𝐺 DProd 𝑆))
1816, 17ffvelrnd 6317 . . . 4 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) ∈ (𝑆𝑥))
199, 2dprddomcld 18316 . . . . . . 7 (𝜑𝐼 ∈ V)
20 mptexg 6439 . . . . . . 7 (𝐼 ∈ V → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
2119, 20syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
2221adantr 481 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
23 funmpt 5886 . . . . . 6 Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))
2423a1i 11 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))
25 simprl 793 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓𝑊)
264, 10, 11, 25dprdffsupp 18329 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 )
27 eldifi 3715 . . . . . . . 8 (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → 𝑥𝐼)
28 eqid 2626 . . . . . . . . . 10 (proj1𝐺) = (proj1𝐺)
2912, 13, 14, 28, 15dpjval 18371 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑃𝑥) = ((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
3029fveq1d 6152 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) = (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴))
3127, 30sylan2 491 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃𝑥)‘𝐴) = (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴))
32 simplrr 800 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg 𝑓))
33 eqid 2626 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
34 eqid 2626 . . . . . . . . . . 11 (Cntz‘𝐺) = (Cntz‘𝐺)
35 dprdgrp 18320 . . . . . . . . . . . . 13 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
36 grpmnd 17345 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3710, 35, 363syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd)
3837adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐺 ∈ Mnd)
3919ad2antrr 761 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐼 ∈ V)
404, 10, 11, 25, 33dprdff 18327 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓:𝐼⟶(Base‘𝐺))
4140adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓:𝐼⟶(Base‘𝐺))
4225adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓𝑊)
434, 12, 13, 42, 34dprdfcntz 18330 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
4427, 43sylan2 491 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
45 snssi 4313 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )))
4645adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )))
4746difss2d 3723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ 𝐼)
48 suppssdm 7254 . . . . . . . . . . . . . . 15 (𝑓 supp 0 ) ⊆ dom 𝑓
49 fdm 6010 . . . . . . . . . . . . . . . 16 (𝑓:𝐼⟶(Base‘𝐺) → dom 𝑓 = 𝐼)
5040, 49syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → dom 𝑓 = 𝐼)
5148, 50syl5sseq 3637 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ 𝐼)
5251adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ 𝐼)
53 ssconb 3726 . . . . . . . . . . . . 13 (({𝑥} ⊆ 𝐼 ∧ (𝑓 supp 0 ) ⊆ 𝐼) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})))
5447, 52, 53syl2anc 692 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})))
5546, 54mpbid 222 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥}))
5626adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓 finSupp 0 )
5733, 3, 34, 38, 39, 41, 44, 55, 56gsumzres 18226 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 Σg 𝑓))
5832, 57eqtr4d 2663 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))
59 eqid 2626 . . . . . . . . . . 11 {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 } = {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 }
60 difss 3720 . . . . . . . . . . . . . 14 (𝐼 ∖ {𝑥}) ⊆ 𝐼
6160a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐼 ∖ {𝑥}) ⊆ 𝐼)
6212, 13, 61dprdres 18343 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ⊆ (𝐺 DProd 𝑆)))
6362simpld 475 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))
6412, 13dprdf2 18322 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
65 fssres 6029 . . . . . . . . . . . . 13 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺))
6664, 60, 65sylancl 693 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺))
67 fdm 6010 . . . . . . . . . . . 12 ((𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺) → dom (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝐼 ∖ {𝑥}))
6866, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → dom (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝐼 ∖ {𝑥}))
6940adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓:𝐼⟶(Base‘𝐺))
7069feqmptd 6207 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 = (𝑘𝐼 ↦ (𝑓𝑘)))
7170reseq1d 5359 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})))
72 resmpt 5412 . . . . . . . . . . . . . 14 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
7360, 72ax-mp 5 . . . . . . . . . . . . 13 ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))
7471, 73syl6eq 2676 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
75 eldifi 3715 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐼 ∖ {𝑥}) → 𝑘𝐼)
764, 12, 13, 42dprdfcl 18328 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑓𝑘) ∈ (𝑆𝑘))
7775, 76sylan2 491 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓𝑘) ∈ (𝑆𝑘))
78 fvres 6165 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐼 ∖ {𝑥}) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆𝑘))
7978adantl 482 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆𝑘))
8077, 79eleqtrrd 2707 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓𝑘) ∈ ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘))
81 difexg 4773 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ V → (𝐼 ∖ {𝑥}) ∈ V)
8219, 81syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼 ∖ {𝑥}) ∈ V)
83 mptexg 6439 . . . . . . . . . . . . . . . 16 ((𝐼 ∖ {𝑥}) ∈ V → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
8482, 83syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
8584ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
86 funmpt 5886 . . . . . . . . . . . . . . 15 Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))
8786a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
8826adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 finSupp 0 )
89 ssdif 3728 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 )))
9060, 89ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 ))
9190sseli 3584 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) → 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 )))
92 ssid 3608 . . . . . . . . . . . . . . . . . 18 (𝑓 supp 0 ) ⊆ (𝑓 supp 0 )
9392a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 ))
9419ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐼 ∈ V)
95 fvex 6160 . . . . . . . . . . . . . . . . . . 19 (0g𝐺) ∈ V
963, 95eqeltri 2700 . . . . . . . . . . . . . . . . . 18 0 ∈ V
9796a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 0 ∈ V)
9869, 93, 94, 97suppssr 7272 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓𝑘) = 0 )
9991, 98sylan2 491 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 ))) → (𝑓𝑘) = 0 )
10082ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐼 ∖ {𝑥}) ∈ V)
10199, 100suppss2 7275 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))
102 fsuppsssupp 8236 . . . . . . . . . . . . . 14 ((((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V ∧ Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))) ∧ (𝑓 finSupp 0 ∧ ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) finSupp 0 )
10385, 87, 88, 101, 102syl22anc 1324 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) finSupp 0 )
10459, 63, 68, 80, 103dprdwd 18326 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 })
10574, 104eqeltrd 2704 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) ∈ {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 })
1063, 59, 63, 68, 105eldprdi 18333 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
10727, 106sylan2 491 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
10858, 107eqeltrd 2704 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
109 eqid 2626 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
110 eqid 2626 . . . . . . . . . 10 (LSSum‘𝐺) = (LSSum‘𝐺)
11164, 15ffvelrnd 6317 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
112 dprdsubg 18339 . . . . . . . . . . 11 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
11363, 112syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
11412, 13, 15, 3dpjdisj 18368 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑆𝑥) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = { 0 })
11512, 13, 15, 34dpjcntz 18367 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
116109, 110, 3, 34, 111, 113, 114, 115, 28pj1rid 18031 . . . . . . . . 9 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
11727, 116sylanl2 682 . . . . . . . 8 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
118108, 117mpdan 701 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
11931, 118eqtrd 2660 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃𝑥)‘𝐴) = 0 )
12019adantr 481 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐼 ∈ V)
121119, 120suppss2 7275 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))
122 fsuppsssupp 8236 . . . . 5 ((((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V ∧ Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))) ∧ (𝑓 finSupp 0 ∧ ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) finSupp 0 )
12322, 24, 26, 121, 122syl22anc 1324 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) finSupp 0 )
1244, 10, 11, 18, 123dprdwd 18326 . . 3 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊)
125 simprr 795 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg 𝑓))
12640feqmptd 6207 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥𝐼 ↦ (𝑓𝑥)))
127 simplrr 800 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 = (𝐺 Σg 𝑓))
12812, 35, 363syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺 ∈ Mnd)
1294, 12, 13, 42dprdffsupp 18329 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 finSupp 0 )
130 disjdif 4017 . . . . . . . . . . . . 13 ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅
131130a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅)
132 undif2 4021 . . . . . . . . . . . . 13 ({𝑥} ∪ (𝐼 ∖ {𝑥})) = ({𝑥} ∪ 𝐼)
13315snssd 4314 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → {𝑥} ⊆ 𝐼)
134 ssequn1 3766 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝐼 ↔ ({𝑥} ∪ 𝐼) = 𝐼)
135133, 134sylib 208 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ({𝑥} ∪ 𝐼) = 𝐼)
136132, 135syl5req 2673 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐼 = ({𝑥} ∪ (𝐼 ∖ {𝑥})))
13733, 3, 109, 34, 128, 94, 69, 43, 129, 131, 136gsumzsplit 18243 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg 𝑓) = ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
13869, 133feqresmpt 6208 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ {𝑥}) = (𝑘 ∈ {𝑥} ↦ (𝑓𝑘)))
139138oveq2d 6621 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))))
14069, 15ffvelrnd 6317 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ (Base‘𝐺))
141 fveq2 6150 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
14233, 141gsumsn 18270 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑓𝑥) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))) = (𝑓𝑥))
143128, 15, 140, 142syl3anc 1323 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))) = (𝑓𝑥))
144139, 143eqtrd 2660 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝑓𝑥))
145144oveq1d 6620 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
146127, 137, 1453eqtrd 2664 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
14712, 13, 15, 110dpjlsm 18369 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 DProd 𝑆) = ((𝑆𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
14817, 147eleqtrd 2706 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 ∈ ((𝑆𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
1494, 10, 11, 25dprdfcl 18328 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ (𝑆𝑥))
150109, 110, 3, 34, 111, 113, 114, 115, 28, 148, 149, 106pj1eq 18029 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐴 = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) ↔ ((((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1𝐺)(𝑆𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))))
151146, 150mpbid 222 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1𝐺)(𝑆𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
152151simpld 475 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥))
15330, 152eqtrd 2660 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) = (𝑓𝑥))
154153mpteq2dva 4709 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) = (𝑥𝐼 ↦ (𝑓𝑥)))
155126, 154eqtr4d 2663 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))
156155oveq2d 6621 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))))
157125, 156eqtrd 2660 . . 3 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))))
158124, 157jca 554 . 2 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
1598, 158rexlimddv 3033 1 (𝜑 → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wrex 2913  {crab 2916  Vcvv 3191  cdif 3557  cun 3558  cin 3559  wss 3560  c0 3896  {csn 4153   class class class wbr 4618  cmpt 4678  dom cdm 5079  ran crn 5080  cres 5081  Fun wfun 5844  wf 5846  cfv 5850  (class class class)co 6605   supp csupp 7241  Xcixp 7853   finSupp cfsupp 8220  Basecbs 15776  +gcplusg 15857  0gc0g 16016   Σg cgsu 16017  Mndcmnd 17210  Grpcgrp 17338  SubGrpcsubg 17504  Cntzccntz 17664  LSSumclsm 17965  proj1cpj1 17966   DProd cdprd 18308  dProjcdpj 18309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-tpos 7298  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-seq 12739  df-hash 13055  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-0g 16018  df-gsum 16019  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-mhm 17251  df-submnd 17252  df-grp 17341  df-minusg 17342  df-sbg 17343  df-mulg 17457  df-subg 17507  df-ghm 17574  df-gim 17617  df-cntz 17666  df-oppg 17692  df-lsm 17967  df-pj1 17968  df-cmn 18111  df-dprd 18310  df-dpj 18311
This theorem is referenced by:  dpjeq  18374  dpjid  18375
  Copyright terms: Public domain W3C validator