MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjidcl Structured version   Visualization version   GIF version

Theorem dpjidcl 18503
Description: The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjidcl.3 (𝜑𝐴 ∈ (𝐺 DProd 𝑆))
dpjidcl.0 0 = (0g𝐺)
dpjidcl.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
Assertion
Ref Expression
dpjidcl (𝜑 → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
Distinct variable groups:   𝑥,, 0   ,𝑖,𝐺,𝑥   𝑃,,𝑥   𝜑,𝑖,𝑥   ,𝐼,𝑖,𝑥   𝑥,𝑊   𝐴,,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑()   𝐴(𝑖)   𝑃(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dpjidcl
Dummy variables 𝑘 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dpjidcl.3 . . . 4 (𝜑𝐴 ∈ (𝐺 DProd 𝑆))
2 dpjfval.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
3 dpjidcl.0 . . . . . 6 0 = (0g𝐺)
4 dpjidcl.w . . . . . 6 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
53, 4eldprd 18449 . . . . 5 (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
62, 5syl 17 . . . 4 (𝜑 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
71, 6mpbid 222 . . 3 (𝜑 → (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓)))
87simprd 478 . 2 (𝜑 → ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))
9 dpjfval.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
109adantr 480 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆)
112adantr 480 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼)
129ad2antrr 762 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺dom DProd 𝑆)
132ad2antrr 762 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → dom 𝑆 = 𝐼)
14 dpjfval.p . . . . . 6 𝑃 = (𝐺dProj𝑆)
15 simpr 476 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑥𝐼)
1612, 13, 14, 15dpjf 18502 . . . . 5 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑃𝑥):(𝐺 DProd 𝑆)⟶(𝑆𝑥))
171ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 ∈ (𝐺 DProd 𝑆))
1816, 17ffvelrnd 6400 . . . 4 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) ∈ (𝑆𝑥))
199, 2dprddomcld 18446 . . . . . . 7 (𝜑𝐼 ∈ V)
20 mptexg 6525 . . . . . . 7 (𝐼 ∈ V → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
2119, 20syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
2221adantr 480 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
23 funmpt 5964 . . . . . 6 Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))
2423a1i 11 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))
25 simprl 809 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓𝑊)
264, 10, 11, 25dprdffsupp 18459 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 )
27 eldifi 3765 . . . . . . . 8 (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → 𝑥𝐼)
28 eqid 2651 . . . . . . . . . 10 (proj1𝐺) = (proj1𝐺)
2912, 13, 14, 28, 15dpjval 18501 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑃𝑥) = ((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
3029fveq1d 6231 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) = (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴))
3127, 30sylan2 490 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃𝑥)‘𝐴) = (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴))
32 simplrr 818 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg 𝑓))
33 eqid 2651 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
34 eqid 2651 . . . . . . . . . . 11 (Cntz‘𝐺) = (Cntz‘𝐺)
35 dprdgrp 18450 . . . . . . . . . . . . 13 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
36 grpmnd 17476 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3710, 35, 363syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd)
3837adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐺 ∈ Mnd)
3919ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐼 ∈ V)
404, 10, 11, 25, 33dprdff 18457 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓:𝐼⟶(Base‘𝐺))
4140adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓:𝐼⟶(Base‘𝐺))
4225adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓𝑊)
434, 12, 13, 42, 34dprdfcntz 18460 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
4427, 43sylan2 490 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
45 snssi 4371 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )))
4645adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )))
4746difss2d 3773 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ 𝐼)
48 suppssdm 7353 . . . . . . . . . . . . . . 15 (𝑓 supp 0 ) ⊆ dom 𝑓
49 fdm 6089 . . . . . . . . . . . . . . . 16 (𝑓:𝐼⟶(Base‘𝐺) → dom 𝑓 = 𝐼)
5040, 49syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → dom 𝑓 = 𝐼)
5148, 50syl5sseq 3686 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ 𝐼)
5251adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ 𝐼)
53 ssconb 3776 . . . . . . . . . . . . 13 (({𝑥} ⊆ 𝐼 ∧ (𝑓 supp 0 ) ⊆ 𝐼) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})))
5447, 52, 53syl2anc 694 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})))
5546, 54mpbid 222 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥}))
5626adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓 finSupp 0 )
5733, 3, 34, 38, 39, 41, 44, 55, 56gsumzres 18356 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 Σg 𝑓))
5832, 57eqtr4d 2688 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))
59 eqid 2651 . . . . . . . . . . 11 {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 } = {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 }
60 difss 3770 . . . . . . . . . . . . . 14 (𝐼 ∖ {𝑥}) ⊆ 𝐼
6160a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐼 ∖ {𝑥}) ⊆ 𝐼)
6212, 13, 61dprdres 18473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ⊆ (𝐺 DProd 𝑆)))
6362simpld 474 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))
6412, 13dprdf2 18452 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
65 fssres 6108 . . . . . . . . . . . . 13 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺))
6664, 60, 65sylancl 695 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺))
67 fdm 6089 . . . . . . . . . . . 12 ((𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺) → dom (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝐼 ∖ {𝑥}))
6866, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → dom (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝐼 ∖ {𝑥}))
6940adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓:𝐼⟶(Base‘𝐺))
7069feqmptd 6288 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 = (𝑘𝐼 ↦ (𝑓𝑘)))
7170reseq1d 5427 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})))
72 resmpt 5484 . . . . . . . . . . . . . 14 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
7360, 72ax-mp 5 . . . . . . . . . . . . 13 ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))
7471, 73syl6eq 2701 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
75 eldifi 3765 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐼 ∖ {𝑥}) → 𝑘𝐼)
764, 12, 13, 42dprdfcl 18458 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑓𝑘) ∈ (𝑆𝑘))
7775, 76sylan2 490 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓𝑘) ∈ (𝑆𝑘))
78 fvres 6245 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐼 ∖ {𝑥}) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆𝑘))
7978adantl 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆𝑘))
8077, 79eleqtrrd 2733 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓𝑘) ∈ ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘))
81 difexg 4841 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ V → (𝐼 ∖ {𝑥}) ∈ V)
8219, 81syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼 ∖ {𝑥}) ∈ V)
83 mptexg 6525 . . . . . . . . . . . . . . . 16 ((𝐼 ∖ {𝑥}) ∈ V → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
8482, 83syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
8584ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
86 funmpt 5964 . . . . . . . . . . . . . . 15 Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))
8786a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
8826adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 finSupp 0 )
89 ssdif 3778 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 )))
9060, 89ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 ))
9190sseli 3632 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) → 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 )))
92 ssid 3657 . . . . . . . . . . . . . . . . . 18 (𝑓 supp 0 ) ⊆ (𝑓 supp 0 )
9392a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 ))
9419ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐼 ∈ V)
95 fvex 6239 . . . . . . . . . . . . . . . . . . 19 (0g𝐺) ∈ V
963, 95eqeltri 2726 . . . . . . . . . . . . . . . . . 18 0 ∈ V
9796a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 0 ∈ V)
9869, 93, 94, 97suppssr 7371 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓𝑘) = 0 )
9991, 98sylan2 490 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 ))) → (𝑓𝑘) = 0 )
10082ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐼 ∖ {𝑥}) ∈ V)
10199, 100suppss2 7374 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))
102 fsuppsssupp 8332 . . . . . . . . . . . . . 14 ((((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V ∧ Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))) ∧ (𝑓 finSupp 0 ∧ ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) finSupp 0 )
10385, 87, 88, 101, 102syl22anc 1367 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) finSupp 0 )
10459, 63, 68, 80, 103dprdwd 18456 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 })
10574, 104eqeltrd 2730 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) ∈ {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 })
1063, 59, 63, 68, 105eldprdi 18463 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
10727, 106sylan2 490 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
10858, 107eqeltrd 2730 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
109 eqid 2651 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
110 eqid 2651 . . . . . . . . . 10 (LSSum‘𝐺) = (LSSum‘𝐺)
11164, 15ffvelrnd 6400 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
112 dprdsubg 18469 . . . . . . . . . . 11 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
11363, 112syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
11412, 13, 15, 3dpjdisj 18498 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑆𝑥) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = { 0 })
11512, 13, 15, 34dpjcntz 18497 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
116109, 110, 3, 34, 111, 113, 114, 115, 28pj1rid 18161 . . . . . . . . 9 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
11727, 116sylanl2 684 . . . . . . . 8 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
118108, 117mpdan 703 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
11931, 118eqtrd 2685 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃𝑥)‘𝐴) = 0 )
12019adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐼 ∈ V)
121119, 120suppss2 7374 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))
122 fsuppsssupp 8332 . . . . 5 ((((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V ∧ Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))) ∧ (𝑓 finSupp 0 ∧ ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) finSupp 0 )
12322, 24, 26, 121, 122syl22anc 1367 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) finSupp 0 )
1244, 10, 11, 18, 123dprdwd 18456 . . 3 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊)
125 simprr 811 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg 𝑓))
12640feqmptd 6288 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥𝐼 ↦ (𝑓𝑥)))
127 simplrr 818 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 = (𝐺 Σg 𝑓))
12812, 35, 363syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺 ∈ Mnd)
1294, 12, 13, 42dprdffsupp 18459 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 finSupp 0 )
130 disjdif 4073 . . . . . . . . . . . . 13 ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅
131130a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅)
132 undif2 4077 . . . . . . . . . . . . 13 ({𝑥} ∪ (𝐼 ∖ {𝑥})) = ({𝑥} ∪ 𝐼)
13315snssd 4372 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → {𝑥} ⊆ 𝐼)
134 ssequn1 3816 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝐼 ↔ ({𝑥} ∪ 𝐼) = 𝐼)
135133, 134sylib 208 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ({𝑥} ∪ 𝐼) = 𝐼)
136132, 135syl5req 2698 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐼 = ({𝑥} ∪ (𝐼 ∖ {𝑥})))
13733, 3, 109, 34, 128, 94, 69, 43, 129, 131, 136gsumzsplit 18373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg 𝑓) = ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
13869, 133feqresmpt 6289 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ {𝑥}) = (𝑘 ∈ {𝑥} ↦ (𝑓𝑘)))
139138oveq2d 6706 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))))
14069, 15ffvelrnd 6400 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ (Base‘𝐺))
141 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
14233, 141gsumsn 18400 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑓𝑥) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))) = (𝑓𝑥))
143128, 15, 140, 142syl3anc 1366 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))) = (𝑓𝑥))
144139, 143eqtrd 2685 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝑓𝑥))
145144oveq1d 6705 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
146127, 137, 1453eqtrd 2689 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
14712, 13, 15, 110dpjlsm 18499 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 DProd 𝑆) = ((𝑆𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
14817, 147eleqtrd 2732 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 ∈ ((𝑆𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
1494, 10, 11, 25dprdfcl 18458 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ (𝑆𝑥))
150109, 110, 3, 34, 111, 113, 114, 115, 28, 148, 149, 106pj1eq 18159 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐴 = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) ↔ ((((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1𝐺)(𝑆𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))))
151146, 150mpbid 222 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1𝐺)(𝑆𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
152151simpld 474 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥))
15330, 152eqtrd 2685 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) = (𝑓𝑥))
154153mpteq2dva 4777 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) = (𝑥𝐼 ↦ (𝑓𝑥)))
155126, 154eqtr4d 2688 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))
156155oveq2d 6706 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))))
157125, 156eqtrd 2685 . . 3 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))))
158124, 157jca 553 . 2 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
1598, 158rexlimddv 3064 1 (𝜑 → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wrex 2942  {crab 2945  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948  {csn 4210   class class class wbr 4685  cmpt 4762  dom cdm 5143  ran crn 5144  cres 5145  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690   supp csupp 7340  Xcixp 7950   finSupp cfsupp 8316  Basecbs 15904  +gcplusg 15988  0gc0g 16147   Σg cgsu 16148  Mndcmnd 17341  Grpcgrp 17469  SubGrpcsubg 17635  Cntzccntz 17794  LSSumclsm 18095  proj1cpj1 18096   DProd cdprd 18438  dProjcdpj 18439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-gim 17748  df-cntz 17796  df-oppg 17822  df-lsm 18097  df-pj1 18098  df-cmn 18241  df-dprd 18440  df-dpj 18441
This theorem is referenced by:  dpjeq  18504  dpjid  18505
  Copyright terms: Public domain W3C validator