MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjidcl Structured version   Visualization version   GIF version

Theorem dpjidcl 19109
Description: The key property of projections: the sum of all the projections of 𝐴 is 𝐴. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjidcl.3 (𝜑𝐴 ∈ (𝐺 DProd 𝑆))
dpjidcl.0 0 = (0g𝐺)
dpjidcl.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
Assertion
Ref Expression
dpjidcl (𝜑 → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
Distinct variable groups:   𝑥,, 0   ,𝑖,𝐺,𝑥   𝑃,,𝑥   𝜑,𝑖,𝑥   ,𝐼,𝑖,𝑥   𝑥,𝑊   𝐴,,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑()   𝐴(𝑖)   𝑃(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dpjidcl
Dummy variables 𝑘 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dpjidcl.3 . . . 4 (𝜑𝐴 ∈ (𝐺 DProd 𝑆))
2 dpjfval.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
3 dpjidcl.0 . . . . . 6 0 = (0g𝐺)
4 dpjidcl.w . . . . . 6 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
53, 4eldprd 19055 . . . . 5 (dom 𝑆 = 𝐼 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
62, 5syl 17 . . . 4 (𝜑 → (𝐴 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))))
71, 6mpbid 233 . . 3 (𝜑 → (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓)))
87simprd 496 . 2 (𝜑 → ∃𝑓𝑊 𝐴 = (𝐺 Σg 𝑓))
9 dpjfval.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
109adantr 481 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆)
112adantr 481 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼)
129ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺dom DProd 𝑆)
132ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → dom 𝑆 = 𝐼)
14 dpjfval.p . . . . . 6 𝑃 = (𝐺dProj𝑆)
15 simpr 485 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑥𝐼)
1612, 13, 14, 15dpjf 19108 . . . . 5 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑃𝑥):(𝐺 DProd 𝑆)⟶(𝑆𝑥))
171ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 ∈ (𝐺 DProd 𝑆))
1816, 17ffvelrnd 6844 . . . 4 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) ∈ (𝑆𝑥))
199, 2dprddomcld 19052 . . . . . . 7 (𝜑𝐼 ∈ V)
2019mptexd 6978 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
2120adantr 481 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V)
22 funmpt 6386 . . . . . 6 Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))
2322a1i 11 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))
24 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓𝑊)
254, 10, 11, 24dprdffsupp 19065 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 )
26 eldifi 4100 . . . . . . . 8 (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → 𝑥𝐼)
27 eqid 2818 . . . . . . . . . 10 (proj1𝐺) = (proj1𝐺)
2812, 13, 14, 27, 15dpjval 19107 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑃𝑥) = ((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
2928fveq1d 6665 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) = (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴))
3026, 29sylan2 592 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃𝑥)‘𝐴) = (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴))
31 simplrr 774 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg 𝑓))
32 eqid 2818 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
33 eqid 2818 . . . . . . . . . . 11 (Cntz‘𝐺) = (Cntz‘𝐺)
34 dprdgrp 19056 . . . . . . . . . . . . 13 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
35 grpmnd 18048 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3610, 34, 353syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd)
3736adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐺 ∈ Mnd)
3819ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐼 ∈ V)
394, 10, 11, 24, 32dprdff 19063 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓:𝐼⟶(Base‘𝐺))
4039adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓:𝐼⟶(Base‘𝐺))
4124adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓𝑊)
424, 12, 13, 41, 33dprdfcntz 19066 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
4326, 42sylan2 592 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓))
44 snssi 4733 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 )) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )))
4544adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )))
4645difss2d 4108 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → {𝑥} ⊆ 𝐼)
47 suppssdm 7832 . . . . . . . . . . . . . . 15 (𝑓 supp 0 ) ⊆ dom 𝑓
4847, 39fssdm 6523 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ 𝐼)
4948adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ 𝐼)
50 ssconb 4111 . . . . . . . . . . . . 13 (({𝑥} ⊆ 𝐼 ∧ (𝑓 supp 0 ) ⊆ 𝐼) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})))
5146, 49, 50syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ({𝑥} ⊆ (𝐼 ∖ (𝑓 supp 0 )) ↔ (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥})))
5245, 51mpbid 233 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓 supp 0 ) ⊆ (𝐼 ∖ {𝑥}))
5325adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝑓 finSupp 0 )
5432, 3, 33, 37, 38, 40, 43, 52, 53gsumzres 18958 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) = (𝐺 Σg 𝑓))
5531, 54eqtr4d 2856 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))
56 eqid 2818 . . . . . . . . . . 11 {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 } = {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 }
57 difss 4105 . . . . . . . . . . . . . 14 (𝐼 ∖ {𝑥}) ⊆ 𝐼
5857a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐼 ∖ {𝑥}) ⊆ 𝐼)
5912, 13, 58dprdres 19079 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) ∧ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ⊆ (𝐺 DProd 𝑆)))
6059simpld 495 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))
6112, 13dprdf2 19058 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
62 fssres 6537 . . . . . . . . . . . . 13 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺))
6361, 57, 62sylancl 586 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆 ↾ (𝐼 ∖ {𝑥})):(𝐼 ∖ {𝑥})⟶(SubGrp‘𝐺))
6463fdmd 6516 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → dom (𝑆 ↾ (𝐼 ∖ {𝑥})) = (𝐼 ∖ {𝑥}))
6539adantr 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓:𝐼⟶(Base‘𝐺))
6665feqmptd 6726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 = (𝑘𝐼 ↦ (𝑓𝑘)))
6766reseq1d 5845 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})))
68 resmpt 5898 . . . . . . . . . . . . . 14 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
6957, 68ax-mp 5 . . . . . . . . . . . . 13 ((𝑘𝐼 ↦ (𝑓𝑘)) ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))
7067, 69syl6eq 2869 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) = (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
71 eldifi 4100 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐼 ∖ {𝑥}) → 𝑘𝐼)
724, 12, 13, 41dprdfcl 19064 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘𝐼) → (𝑓𝑘) ∈ (𝑆𝑘))
7371, 72sylan2 592 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓𝑘) ∈ (𝑆𝑘))
74 fvres 6682 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐼 ∖ {𝑥}) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆𝑘))
7574adantl 482 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘) = (𝑆𝑘))
7673, 75eleqtrrd 2913 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ {𝑥})) → (𝑓𝑘) ∈ ((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑘))
77 difexg 5222 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ V → (𝐼 ∖ {𝑥}) ∈ V)
7819, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐼 ∖ {𝑥}) ∈ V)
7978mptexd 6978 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
8079ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V)
81 funmpt 6386 . . . . . . . . . . . . . . 15 Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))
8281a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)))
8325adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 finSupp 0 )
84 ssdif 4113 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 )))
8557, 84ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) ⊆ (𝐼 ∖ (𝑓 supp 0 ))
8685sseli 3960 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 )) → 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 )))
87 ssidd 3987 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 ))
8819ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐼 ∈ V)
893fvexi 6677 . . . . . . . . . . . . . . . . . 18 0 ∈ V
9089a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 0 ∈ V)
9165, 87, 88, 90suppssr 7850 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝑓𝑘) = 0 )
9286, 91sylan2 592 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝑘 ∈ ((𝐼 ∖ {𝑥}) ∖ (𝑓 supp 0 ))) → (𝑓𝑘) = 0 )
9378ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐼 ∖ {𝑥}) ∈ V)
9492, 93suppss2 7853 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))
95 fsuppsssupp 8837 . . . . . . . . . . . . . 14 ((((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ V ∧ Fun (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘))) ∧ (𝑓 finSupp 0 ∧ ((𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) finSupp 0 )
9680, 82, 83, 94, 95syl22anc 834 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) finSupp 0 )
9756, 60, 64, 76, 96dprdwd 19062 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑘 ∈ (𝐼 ∖ {𝑥}) ↦ (𝑓𝑘)) ∈ {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 })
9870, 97eqeltrd 2910 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ (𝐼 ∖ {𝑥})) ∈ {X𝑖 ∈ (𝐼 ∖ {𝑥})((𝑆 ↾ (𝐼 ∖ {𝑥}))‘𝑖) ∣ finSupp 0 })
993, 56, 60, 64, 98eldprdi 19069 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
10026, 99sylan2 592 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))) ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
10155, 100eqeltrd 2910 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))
102 eqid 2818 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
103 eqid 2818 . . . . . . . . . 10 (LSSum‘𝐺) = (LSSum‘𝐺)
10461, 15ffvelrnd 6844 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
105 dprdsubg 19075 . . . . . . . . . . 11 (𝐺dom DProd (𝑆 ↾ (𝐼 ∖ {𝑥})) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
10660, 105syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
10712, 13, 15, 3dpjdisj 19104 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑆𝑥) ∩ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) = { 0 })
10812, 13, 15, 33dpjcntz 19103 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
109102, 103, 3, 33, 104, 106, 107, 108, 27pj1rid 18757 . . . . . . . . 9 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
11026, 109sylanl2 677 . . . . . . . 8 ((((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝐴 ∈ (𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
111101, 110mpdan 683 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = 0 )
11230, 111eqtrd 2853 . . . . . 6 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → ((𝑃𝑥)‘𝐴) = 0 )
11319adantr 481 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐼 ∈ V)
114112, 113suppss2 7853 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))
115 fsuppsssupp 8837 . . . . 5 ((((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ V ∧ Fun (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))) ∧ (𝑓 finSupp 0 ∧ ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) finSupp 0 )
11621, 23, 25, 114, 115syl22anc 834 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) finSupp 0 )
1174, 10, 11, 18, 116dprdwd 19062 . . 3 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊)
118 simprr 769 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg 𝑓))
11939feqmptd 6726 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥𝐼 ↦ (𝑓𝑥)))
120 simplrr 774 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 = (𝐺 Σg 𝑓))
12112, 34, 353syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐺 ∈ Mnd)
1224, 12, 13, 41dprdffsupp 19065 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝑓 finSupp 0 )
123 disjdif 4417 . . . . . . . . . . . . 13 ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅
124123a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ({𝑥} ∩ (𝐼 ∖ {𝑥})) = ∅)
125 undif2 4421 . . . . . . . . . . . . 13 ({𝑥} ∪ (𝐼 ∖ {𝑥})) = ({𝑥} ∪ 𝐼)
12615snssd 4734 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → {𝑥} ⊆ 𝐼)
127 ssequn1 4153 . . . . . . . . . . . . . 14 ({𝑥} ⊆ 𝐼 ↔ ({𝑥} ∪ 𝐼) = 𝐼)
128126, 127sylib 219 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ({𝑥} ∪ 𝐼) = 𝐼)
129125, 128syl5req 2866 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐼 = ({𝑥} ∪ (𝐼 ∖ {𝑥})))
13032, 3, 102, 33, 121, 88, 65, 42, 122, 124, 129gsumzsplit 18976 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg 𝑓) = ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
13165, 126feqresmpt 6727 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓 ↾ {𝑥}) = (𝑘 ∈ {𝑥} ↦ (𝑓𝑘)))
132131oveq2d 7161 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))))
13365, 15ffvelrnd 6844 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ (Base‘𝐺))
134 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
13532, 134gsumsn 19003 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ 𝑥𝐼 ∧ (𝑓𝑥) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))) = (𝑓𝑥))
136121, 15, 133, 135syl3anc 1363 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑘 ∈ {𝑥} ↦ (𝑓𝑘))) = (𝑓𝑥))
137132, 136eqtrd 2853 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 Σg (𝑓 ↾ {𝑥})) = (𝑓𝑥))
138137oveq1d 7160 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑓 ↾ {𝑥}))(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
139120, 130, 1383eqtrd 2857 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
14012, 13, 15, 103dpjlsm 19105 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐺 DProd 𝑆) = ((𝑆𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
14117, 140eleqtrd 2912 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → 𝐴 ∈ ((𝑆𝑥)(LSSum‘𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))))
1424, 10, 11, 24dprdfcl 19064 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ (𝑆𝑥))
143102, 103, 3, 33, 104, 106, 107, 108, 27, 141, 142, 99pj1eq 18755 . . . . . . . . . 10 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (𝐴 = ((𝑓𝑥)(+g𝐺)(𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))) ↔ ((((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1𝐺)(𝑆𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥}))))))
144139, 143mpbid 233 . . . . . . . . 9 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥) ∧ (((𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥})))(proj1𝐺)(𝑆𝑥))‘𝐴) = (𝐺 Σg (𝑓 ↾ (𝐼 ∖ {𝑥})))))
145144simpld 495 . . . . . . . 8 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → (((𝑆𝑥)(proj1𝐺)(𝐺 DProd (𝑆 ↾ (𝐼 ∖ {𝑥}))))‘𝐴) = (𝑓𝑥))
14629, 145eqtrd 2853 . . . . . . 7 (((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) ∧ 𝑥𝐼) → ((𝑃𝑥)‘𝐴) = (𝑓𝑥))
147146mpteq2dva 5152 . . . . . 6 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) = (𝑥𝐼 ↦ (𝑓𝑥)))
148119, 147eqtr4d 2856 . . . . 5 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝑓 = (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))
149148oveq2d 7161 . . . 4 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))))
150118, 149eqtrd 2853 . . 3 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → 𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴))))
151117, 150jca 512 . 2 ((𝜑 ∧ (𝑓𝑊𝐴 = (𝐺 Σg 𝑓))) → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
1528, 151rexlimddv 3288 1 (𝜑 → ((𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)) ∈ 𝑊𝐴 = (𝐺 Σg (𝑥𝐼 ↦ ((𝑃𝑥)‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wrex 3136  {crab 3139  Vcvv 3492  cdif 3930  cun 3931  cin 3932  wss 3933  c0 4288  {csn 4557   class class class wbr 5057  cmpt 5137  dom cdm 5548  ran crn 5549  cres 5550  Fun wfun 6342  wf 6344  cfv 6348  (class class class)co 7145   supp csupp 7819  Xcixp 8449   finSupp cfsupp 8821  Basecbs 16471  +gcplusg 16553  0gc0g 16701   Σg cgsu 16702  Mndcmnd 17899  Grpcgrp 18041  SubGrpcsubg 18211  Cntzccntz 18383  LSSumclsm 18688  proj1cpj1 18689   DProd cdprd 19044  dProjcdpj 19045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-gsum 16704  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-ghm 18294  df-gim 18337  df-cntz 18385  df-oppg 18412  df-lsm 18690  df-pj1 18691  df-cmn 18837  df-dprd 19046  df-dpj 19047
This theorem is referenced by:  dpjeq  19110  dpjid  19111
  Copyright terms: Public domain W3C validator