Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul1000 Structured version   Visualization version   GIF version

Theorem dpmul1000 29916
Description: Multiply by 1000 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dpmul1000.a 𝐴 ∈ ℕ0
dpmul1000.b 𝐵 ∈ ℕ0
dpmul1000.c 𝐶 ∈ ℕ0
dpmul1000.d 𝐷 ∈ ℝ
Assertion
Ref Expression
dpmul1000 ((𝐴.𝐵𝐶𝐷) · 1000) = 𝐴𝐵𝐶𝐷

Proof of Theorem dpmul1000
StepHypRef Expression
1 dpmul1000.a . . . . . 6 𝐴 ∈ ℕ0
2 dpmul1000.b . . . . . . . 8 𝐵 ∈ ℕ0
32nn0rei 11495 . . . . . . 7 𝐵 ∈ ℝ
4 dpmul1000.c . . . . . . . . 9 𝐶 ∈ ℕ0
54nn0rei 11495 . . . . . . . 8 𝐶 ∈ ℝ
6 dpmul1000.d . . . . . . . 8 𝐷 ∈ ℝ
7 dp2cl 29896 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → 𝐶𝐷 ∈ ℝ)
85, 6, 7mp2an 710 . . . . . . 7 𝐶𝐷 ∈ ℝ
9 dp2cl 29896 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶𝐷 ∈ ℝ) → 𝐵𝐶𝐷 ∈ ℝ)
103, 8, 9mp2an 710 . . . . . 6 𝐵𝐶𝐷 ∈ ℝ
11 dpcl 29907 . . . . . 6 ((𝐴 ∈ ℕ0𝐵𝐶𝐷 ∈ ℝ) → (𝐴.𝐵𝐶𝐷) ∈ ℝ)
121, 10, 11mp2an 710 . . . . 5 (𝐴.𝐵𝐶𝐷) ∈ ℝ
1312recni 10244 . . . 4 (𝐴.𝐵𝐶𝐷) ∈ ℂ
14 10nn0 11708 . . . . . 6 10 ∈ ℕ0
15 0nn0 11499 . . . . . 6 0 ∈ ℕ0
1614, 15deccl 11704 . . . . 5 100 ∈ ℕ0
1716nn0cni 11496 . . . 4 100 ∈ ℂ
1814nn0cni 11496 . . . 4 10 ∈ ℂ
1913, 17, 18mulassi 10241 . . 3 (((𝐴.𝐵𝐶𝐷) · 100) · 10) = ((𝐴.𝐵𝐶𝐷) · (100 · 10))
201, 2, 8dpmul100 29914 . . . 4 ((𝐴.𝐵𝐶𝐷) · 100) = 𝐴𝐵𝐶𝐷
2120oveq1i 6823 . . 3 (((𝐴.𝐵𝐶𝐷) · 100) · 10) = (𝐴𝐵𝐶𝐷 · 10)
2216dec0u 11712 . . . . 5 (10 · 100) = 1000
2318, 17, 22mulcomli 10239 . . . 4 (100 · 10) = 1000
2423oveq2i 6824 . . 3 ((𝐴.𝐵𝐶𝐷) · (100 · 10)) = ((𝐴.𝐵𝐶𝐷) · 1000)
2519, 21, 243eqtr3i 2790 . 2 (𝐴𝐵𝐶𝐷 · 10) = ((𝐴.𝐵𝐶𝐷) · 1000)
26 dfdec10 11689 . . . 4 𝐴𝐵𝐶𝐷 = ((10 · 𝐴𝐵) + 𝐶𝐷)
2726oveq1i 6823 . . 3 (𝐴𝐵𝐶𝐷 · 10) = (((10 · 𝐴𝐵) + 𝐶𝐷) · 10)
281, 2deccl 11704 . . . . . 6 𝐴𝐵 ∈ ℕ0
2928nn0cni 11496 . . . . 5 𝐴𝐵 ∈ ℂ
3018, 29mulcli 10237 . . . 4 (10 · 𝐴𝐵) ∈ ℂ
318recni 10244 . . . 4 𝐶𝐷 ∈ ℂ
3230, 31, 18adddiri 10243 . . 3 (((10 · 𝐴𝐵) + 𝐶𝐷) · 10) = (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10))
3328, 4, 6dfdec100 29885 . . . 4 𝐴𝐵𝐶𝐷 = ((100 · 𝐴𝐵) + 𝐶𝐷)
3414dec0u 11712 . . . . . . 7 (10 · 10) = 100
3534oveq1i 6823 . . . . . 6 ((10 · 10) · 𝐴𝐵) = (100 · 𝐴𝐵)
3618, 18, 29mul32i 10424 . . . . . 6 ((10 · 10) · 𝐴𝐵) = ((10 · 𝐴𝐵) · 10)
3735, 36eqtr3i 2784 . . . . 5 (100 · 𝐴𝐵) = ((10 · 𝐴𝐵) · 10)
384, 6dpmul10 29912 . . . . . 6 ((𝐶.𝐷) · 10) = 𝐶𝐷
39 dpval 29906 . . . . . . . 8 ((𝐶 ∈ ℕ0𝐷 ∈ ℝ) → (𝐶.𝐷) = 𝐶𝐷)
404, 6, 39mp2an 710 . . . . . . 7 (𝐶.𝐷) = 𝐶𝐷
4140oveq1i 6823 . . . . . 6 ((𝐶.𝐷) · 10) = (𝐶𝐷 · 10)
4238, 41eqtr3i 2784 . . . . 5 𝐶𝐷 = (𝐶𝐷 · 10)
4337, 42oveq12i 6825 . . . 4 ((100 · 𝐴𝐵) + 𝐶𝐷) = (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10))
4433, 43eqtr2i 2783 . . 3 (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10)) = 𝐴𝐵𝐶𝐷
4527, 32, 443eqtri 2786 . 2 (𝐴𝐵𝐶𝐷 · 10) = 𝐴𝐵𝐶𝐷
4625, 45eqtr3i 2784 1 ((𝐴.𝐵𝐶𝐷) · 1000) = 𝐴𝐵𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2139  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  0cn0 11484  cdc 11685  cdp2 29886  .cdp 29904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-dec 11686  df-dp2 29887  df-dp 29905
This theorem is referenced by:  dpmul4  29931
  Copyright terms: Public domain W3C validator