MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2d2 Structured version   Visualization version   GIF version

Theorem dprd2d2 19165
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d2.1 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
dprd2d2.2 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽𝑆))
dprd2d2.3 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
Assertion
Ref Expression
dprd2d2 (𝜑 → (𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆) ∧ (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))))
Distinct variable groups:   𝑖,𝑗,𝐺   𝑖,𝐼,𝑗   𝑗,𝐽   𝜑,𝑖,𝑗
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖)

Proof of Theorem dprd2d2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5572 . . . . . 6 Rel ({𝑖} × 𝐽)
21rgenw 3150 . . . . 5 𝑖𝐼 Rel ({𝑖} × 𝐽)
3 reliun 5688 . . . . 5 (Rel 𝑖𝐼 ({𝑖} × 𝐽) ↔ ∀𝑖𝐼 Rel ({𝑖} × 𝐽))
42, 3mpbir 233 . . . 4 Rel 𝑖𝐼 ({𝑖} × 𝐽)
54a1i 11 . . 3 (𝜑 → Rel 𝑖𝐼 ({𝑖} × 𝐽))
6 dprd2d2.1 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
76ralrimivva 3191 . . . 4 (𝜑 → ∀𝑖𝐼𝑗𝐽 𝑆 ∈ (SubGrp‘𝐺))
8 eqid 2821 . . . . 5 (𝑖𝐼, 𝑗𝐽𝑆) = (𝑖𝐼, 𝑗𝐽𝑆)
98fmpox 7764 . . . 4 (∀𝑖𝐼𝑗𝐽 𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑖𝐼, 𝑗𝐽𝑆): 𝑖𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺))
107, 9sylib 220 . . 3 (𝜑 → (𝑖𝐼, 𝑗𝐽𝑆): 𝑖𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺))
11 dmiun 5781 . . . 4 dom 𝑖𝐼 ({𝑖} × 𝐽) = 𝑖𝐼 dom ({𝑖} × 𝐽)
12 dmxpss 6027 . . . . . . 7 dom ({𝑖} × 𝐽) ⊆ {𝑖}
13 simpr 487 . . . . . . . 8 ((𝜑𝑖𝐼) → 𝑖𝐼)
1413snssd 4741 . . . . . . 7 ((𝜑𝑖𝐼) → {𝑖} ⊆ 𝐼)
1512, 14sstrid 3977 . . . . . 6 ((𝜑𝑖𝐼) → dom ({𝑖} × 𝐽) ⊆ 𝐼)
1615ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
17 iunss 4968 . . . . 5 ( 𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼 ↔ ∀𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
1816, 17sylibr 236 . . . 4 (𝜑 𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
1911, 18eqsstrid 4014 . . 3 (𝜑 → dom 𝑖𝐼 ({𝑖} × 𝐽) ⊆ 𝐼)
20 dprd2d2.2 . . . . . . 7 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽𝑆))
21 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑖𝐼)
22 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑗𝐽)
238ovmpt4g 7296 . . . . . . . . . 10 ((𝑖𝐼𝑗𝐽𝑆 ∈ (SubGrp‘𝐺)) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2421, 22, 6, 23syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2524anassrs 470 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ 𝑗𝐽) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2625mpteq2dva 5160 . . . . . . 7 ((𝜑𝑖𝐼) → (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑗𝐽𝑆))
2720, 26breqtrrd 5093 . . . . . 6 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
2827ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑖𝐼 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
29 nfcv 2977 . . . . . . 7 𝑖𝐺
30 nfcv 2977 . . . . . . 7 𝑖dom DProd
31 nfcsb1v 3906 . . . . . . . 8 𝑖𝑥 / 𝑖𝐽
32 nfcv 2977 . . . . . . . . 9 𝑖𝑥
33 nfmpo1 7233 . . . . . . . . 9 𝑖(𝑖𝐼, 𝑗𝐽𝑆)
34 nfcv 2977 . . . . . . . . 9 𝑖𝑗
3532, 33, 34nfov 7185 . . . . . . . 8 𝑖(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)
3631, 35nfmpt 5162 . . . . . . 7 𝑖(𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
3729, 30, 36nfbr 5112 . . . . . 6 𝑖 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
38 csbeq1a 3896 . . . . . . . 8 (𝑖 = 𝑥𝐽 = 𝑥 / 𝑖𝐽)
39 oveq1 7162 . . . . . . . 8 (𝑖 = 𝑥 → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
4038, 39mpteq12dv 5150 . . . . . . 7 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
4140breq2d 5077 . . . . . 6 (𝑖 = 𝑥 → (𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) ↔ 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
4237, 41rspc 3610 . . . . 5 (𝑥𝐼 → (∀𝑖𝐼 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) → 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
4328, 42mpan9 509 . . . 4 ((𝜑𝑥𝐼) → 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
44 nfcv 2977 . . . . . 6 𝑦(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)
45 nfcv 2977 . . . . . . 7 𝑗𝑥
46 nfmpo2 7234 . . . . . . 7 𝑗(𝑖𝐼, 𝑗𝐽𝑆)
47 nfcv 2977 . . . . . . 7 𝑗𝑦
4845, 46, 47nfov 7185 . . . . . 6 𝑗(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)
49 oveq2 7163 . . . . . 6 (𝑗 = 𝑦 → (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))
5044, 48, 49cbvmpt 5166 . . . . 5 (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑦𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))
51 nfv 1911 . . . . . . . . . . . . 13 𝑖 𝑗 = 𝑧
5231nfcri 2971 . . . . . . . . . . . . 13 𝑖 𝑗𝑥 / 𝑖𝐽
5351, 52nfan 1896 . . . . . . . . . . . 12 𝑖(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽)
5438eleq2d 2898 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → (𝑗𝐽𝑗𝑥 / 𝑖𝐽))
5554anbi2d 630 . . . . . . . . . . . 12 (𝑖 = 𝑥 → ((𝑗 = 𝑧𝑗𝐽) ↔ (𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽)))
5653, 55equsexv 2265 . . . . . . . . . . 11 (∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ (𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽))
57 simprl 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑖 = 𝑥)
58 simplr 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑥𝐼)
5957, 58eqeltrd 2913 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑖𝐼)
6059biantrurd 535 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → (𝑗𝐽 ↔ (𝑖𝐼𝑗𝐽)))
6160pm5.32da 581 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (((𝑖 = 𝑥𝑗 = 𝑧) ∧ 𝑗𝐽) ↔ ((𝑖 = 𝑥𝑗 = 𝑧) ∧ (𝑖𝐼𝑗𝐽))))
62 anass 471 . . . . . . . . . . . . 13 (((𝑖 = 𝑥𝑗 = 𝑧) ∧ 𝑗𝐽) ↔ (𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)))
63 eqcom 2828 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ↔ ⟨𝑖, 𝑗⟩ = ⟨𝑥, 𝑧⟩)
64 vex 3497 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
65 vex 3497 . . . . . . . . . . . . . . . 16 𝑗 ∈ V
6664, 65opth 5367 . . . . . . . . . . . . . . 15 (⟨𝑖, 𝑗⟩ = ⟨𝑥, 𝑧⟩ ↔ (𝑖 = 𝑥𝑗 = 𝑧))
6763, 66bitr2i 278 . . . . . . . . . . . . . 14 ((𝑖 = 𝑥𝑗 = 𝑧) ↔ ⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩)
6867anbi1i 625 . . . . . . . . . . . . 13 (((𝑖 = 𝑥𝑗 = 𝑧) ∧ (𝑖𝐼𝑗𝐽)) ↔ (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
6961, 62, 683bitr3g 315 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → ((𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7069exbidv 1918 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ ∃𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7156, 70syl5bbr 287 . . . . . . . . . 10 ((𝜑𝑥𝐼) → ((𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ ∃𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7271exbidv 1918 . . . . . . . . 9 ((𝜑𝑥𝐼) → (∃𝑗(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ ∃𝑗𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
73 vex 3497 . . . . . . . . . 10 𝑧 ∈ V
74 eleq1w 2895 . . . . . . . . . 10 (𝑗 = 𝑧 → (𝑗𝑥 / 𝑖𝐽𝑧𝑥 / 𝑖𝐽))
7573, 74ceqsexv 3541 . . . . . . . . 9 (∃𝑗(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ 𝑧𝑥 / 𝑖𝐽)
76 excom 2165 . . . . . . . . 9 (∃𝑗𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
7772, 75, 763bitr3g 315 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑧𝑥 / 𝑖𝐽 ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
78 elrelimasn 5952 . . . . . . . . . 10 (Rel 𝑖𝐼 ({𝑖} × 𝐽) → (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧))
794, 78ax-mp 5 . . . . . . . . 9 (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧)
80 df-br 5066 . . . . . . . . 9 (𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑖𝐼 ({𝑖} × 𝐽))
81 eliunxp 5707 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ 𝑖𝐼 ({𝑖} × 𝐽) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
8279, 80, 813bitri 299 . . . . . . . 8 (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
8377, 82syl6bbr 291 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑧𝑥 / 𝑖𝐽𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥})))
8483eqrdv 2819 . . . . . 6 ((𝜑𝑥𝐼) → 𝑥 / 𝑖𝐽 = ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}))
8584mpteq1d 5154 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)) = (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
8650, 85syl5eq 2868 . . . 4 ((𝜑𝑥𝐼) → (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
8743, 86breqtrd 5091 . . 3 ((𝜑𝑥𝐼) → 𝐺dom DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
88 dprd2d2.3 . . . . 5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
8926oveq2d 7171 . . . . . 6 ((𝜑𝑖𝐼) → (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑗𝐽𝑆)))
9089mpteq2dva 5160 . . . . 5 (𝜑 → (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
9188, 90breqtrrd 5093 . . . 4 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))))
92 nfcv 2977 . . . . . 6 𝑥(𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
93 nfcv 2977 . . . . . . 7 𝑖 DProd
9429, 93, 36nfov 7185 . . . . . 6 𝑖(𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
9540oveq2d 7171 . . . . . 6 (𝑖 = 𝑥 → (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
9692, 94, 95cbvmpt 5166 . . . . 5 (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
9786oveq2d 7171 . . . . . 6 ((𝜑𝑥𝐼) → (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))
9897mpteq2dva 5160 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
9996, 98syl5eq 2868 . . . 4 (𝜑 → (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
10091, 99breqtrd 5091 . . 3 (𝜑𝐺dom DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
101 eqid 2821 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
1025, 10, 19, 87, 100, 101dprd2da 19163 . 2 (𝜑𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆))
1035, 10, 19, 87, 100, 101dprd2db 19164 . . 3 (𝜑 → (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))))
10499, 90eqtr3d 2858 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
105104oveq2d 7171 . . 3 (𝜑 → (𝐺 DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆)))))
106103, 105eqtrd 2856 . 2 (𝜑 → (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆)))))
107102, 106jca 514 1 (𝜑 → (𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆) ∧ (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wral 3138  csb 3882  wss 3935  {csn 4566  cop 4572   ciun 4918   class class class wbr 5065  cmpt 5145   × cxp 5552  dom cdm 5554  cima 5557  Rel wrel 5559  wf 6350  cfv 6354  (class class class)co 7155  cmpo 7157  mrClscmrc 16853  SubGrpcsubg 18272   DProd cdprd 19114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-0g 16714  df-gsum 16715  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-ghm 18355  df-gim 18398  df-cntz 18446  df-oppg 18473  df-lsm 18760  df-cmn 18907  df-dprd 19116
This theorem is referenced by:  ablfaclem2  19207
  Copyright terms: Public domain W3C validator