MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdcntz Structured version   Visualization version   GIF version

Theorem dprdcntz 19124
Description: The function 𝑆 is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz.2 (𝜑 → dom 𝑆 = 𝐼)
dprdcntz.3 (𝜑𝑋𝐼)
dprdcntz.4 (𝜑𝑌𝐼)
dprdcntz.5 (𝜑𝑋𝑌)
dprdcntz.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
dprdcntz (𝜑 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))

Proof of Theorem dprdcntz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6669 . . 3 (𝑦 = 𝑌 → (𝑍‘(𝑆𝑦)) = (𝑍‘(𝑆𝑌)))
21sseq2d 3998 . 2 (𝑦 = 𝑌 → ((𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦)) ↔ (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌))))
3 sneq 4570 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
43difeq2d 4098 . . . 4 (𝑥 = 𝑋 → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋}))
5 fveq2 6664 . . . . 5 (𝑥 = 𝑋 → (𝑆𝑥) = (𝑆𝑋))
65sseq1d 3997 . . . 4 (𝑥 = 𝑋 → ((𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ↔ (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦))))
74, 6raleqbidv 3401 . . 3 (𝑥 = 𝑋 → (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ↔ ∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦))))
8 dprdcntz.1 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
9 dprdcntz.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
108, 9dprddomcld 19117 . . . . . . 7 (𝜑𝐼 ∈ V)
11 dprdcntz.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
12 eqid 2821 . . . . . . . 8 (0g𝐺) = (0g𝐺)
13 eqid 2821 . . . . . . . 8 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
1411, 12, 13dmdprd 19114 . . . . . . 7 ((𝐼 ∈ V ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}))))
1510, 9, 14syl2anc 586 . . . . . 6 (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}))))
168, 15mpbid 234 . . . . 5 (𝜑 → (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)})))
1716simp3d 1140 . . . 4 (𝜑 → ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}))
18 simpl 485 . . . . 5 ((∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}) → ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
1918ralimi 3160 . . . 4 (∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}) → ∀𝑥𝐼𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
2017, 19syl 17 . . 3 (𝜑 → ∀𝑥𝐼𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
21 dprdcntz.3 . . 3 (𝜑𝑋𝐼)
227, 20, 21rspcdva 3624 . 2 (𝜑 → ∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦)))
23 dprdcntz.4 . . 3 (𝜑𝑌𝐼)
24 dprdcntz.5 . . . 4 (𝜑𝑋𝑌)
2524necomd 3071 . . 3 (𝜑𝑌𝑋)
26 eldifsn 4712 . . 3 (𝑌 ∈ (𝐼 ∖ {𝑋}) ↔ (𝑌𝐼𝑌𝑋))
2723, 25, 26sylanbrc 585 . 2 (𝜑𝑌 ∈ (𝐼 ∖ {𝑋}))
282, 22, 27rspcdva 3624 1 (𝜑 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3494  cdif 3932  cin 3934  wss 3935  {csn 4560   cuni 4831   class class class wbr 5058  dom cdm 5549  cima 5552  wf 6345  cfv 6349  0gc0g 16707  mrClscmrc 16848  Grpcgrp 18097  SubGrpcsubg 18267  Cntzccntz 18439   DProd cdprd 19109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-ixp 8456  df-dprd 19111
This theorem is referenced by:  dprdfcntz  19131  dprdfadd  19136  dprdres  19144  dprdss  19145  dprdf1o  19148  dprdcntz2  19154  dprd2da  19158  dmdprdsplit2lem  19161
  Copyright terms: Public domain W3C validator