MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddisj2 Structured version   Visualization version   GIF version

Theorem dprddisj2 19160
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dprdcntz2.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz2.2 (𝜑 → dom 𝑆 = 𝐼)
dprdcntz2.c (𝜑𝐶𝐼)
dprdcntz2.d (𝜑𝐷𝐼)
dprdcntz2.i (𝜑 → (𝐶𝐷) = ∅)
dprddisj2.0 0 = (0g𝐺)
Assertion
Ref Expression
dprddisj2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })

Proof of Theorem dprddisj2
Dummy variables 𝑓 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4204 . . . . . 6 ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd (𝑆𝐶))
2 dprdcntz2.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 dprdcntz2.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
4 dprdcntz2.c . . . . . . . 8 (𝜑𝐶𝐼)
52, 3, 4dprdres 19149 . . . . . . 7 (𝜑 → (𝐺dom DProd (𝑆𝐶) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆)))
65simprd 498 . . . . . 6 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆))
71, 6sstrid 3977 . . . . 5 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ (𝐺 DProd 𝑆))
87sseld 3965 . . . 4 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ (𝐺 DProd 𝑆)))
9 dprddisj2.0 . . . . . . . 8 0 = (0g𝐺)
10 eqid 2821 . . . . . . . 8 {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 } = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
119, 10eldprd 19125 . . . . . . 7 (dom 𝑆 = 𝐼 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓))))
123, 11syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓))))
132ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐺dom DProd 𝑆)
143ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → dom 𝑆 = 𝐼)
15 simplr 767 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
16 eqid 2821 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
1710, 13, 14, 15, 16dprdff 19133 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓:𝐼⟶(Base‘𝐺))
1817feqmptd 6732 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 = (𝑥𝐼 ↦ (𝑓𝑥)))
19 dprdcntz2.i . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐶𝐷) = ∅)
2019difeq2d 4098 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐼 ∖ (𝐶𝐷)) = (𝐼 ∖ ∅))
21 difindi 4257 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∖ (𝐶𝐷)) = ((𝐼𝐶) ∪ (𝐼𝐷))
22 dif0 4331 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∖ ∅) = 𝐼
2320, 21, 223eqtr3g 2879 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐼𝐶) ∪ (𝐼𝐷)) = 𝐼)
24 eqimss2 4023 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝐶) ∪ (𝐼𝐷)) = 𝐼𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2625ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐼 ⊆ ((𝐼𝐶) ∪ (𝐼𝐷)))
2726sselda 3966 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → 𝑥 ∈ ((𝐼𝐶) ∪ (𝐼𝐷)))
28 elun 4124 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐼𝐶) ∪ (𝐼𝐷)) ↔ (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷)))
2927, 28sylib 220 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷)))
304ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐶𝐼)
31 simprl 769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)))
329, 10, 13, 14, 30, 15, 31dmdprdsplitlem 19158 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥 ∈ (𝐼𝐶)) → (𝑓𝑥) = 0 )
33 dprdcntz2.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷𝐼)
3433ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝐷𝐼)
35 simprr 771 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))
369, 10, 13, 14, 34, 15, 35dmdprdsplitlem 19158 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥 ∈ (𝐼𝐷)) → (𝑓𝑥) = 0 )
3732, 36jaodan 954 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ (𝑥 ∈ (𝐼𝐶) ∨ 𝑥 ∈ (𝐼𝐷))) → (𝑓𝑥) = 0 )
3829, 37syldan 593 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) ∧ 𝑥𝐼) → (𝑓𝑥) = 0 )
3938mpteq2dva 5160 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝑥𝐼 ↦ (𝑓𝑥)) = (𝑥𝐼0 ))
4018, 39eqtrd 2856 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → 𝑓 = (𝑥𝐼0 ))
4140oveq2d 7171 . . . . . . . . . . 11 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝑥𝐼0 )))
42 dprdgrp 19126 . . . . . . . . . . . . . 14 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
43 grpmnd 18109 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
442, 42, 433syl 18 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Mnd)
452, 3dprddomcld 19122 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ V)
469gsumz 17999 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝐼 ∈ V) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4744, 45, 46syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4847ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
4941, 48eqtrd 2856 . . . . . . . . . 10 (((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) ∧ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))) → (𝐺 Σg 𝑓) = 0 )
5049ex 415 . . . . . . . . 9 ((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) → (((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))) → (𝐺 Σg 𝑓) = 0 ))
51 eleq1 2900 . . . . . . . . . . 11 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ (𝐺 Σg 𝑓) ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷)))))
52 elin 4168 . . . . . . . . . . 11 ((𝐺 Σg 𝑓) ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))))
5351, 52syl6bb 289 . . . . . . . . . 10 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ↔ ((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷)))))
54 velsn 4582 . . . . . . . . . . 11 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
55 eqeq1 2825 . . . . . . . . . . 11 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 = 0 ↔ (𝐺 Σg 𝑓) = 0 ))
5654, 55syl5bb 285 . . . . . . . . . 10 (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ { 0 } ↔ (𝐺 Σg 𝑓) = 0 ))
5753, 56imbi12d 347 . . . . . . . . 9 (𝑥 = (𝐺 Σg 𝑓) → ((𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 }) ↔ (((𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐶)) ∧ (𝐺 Σg 𝑓) ∈ (𝐺 DProd (𝑆𝐷))) → (𝐺 Σg 𝑓) = 0 )))
5850, 57syl5ibrcom 249 . . . . . . . 8 ((𝜑𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }) → (𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
5958rexlimdva 3284 . . . . . . 7 (𝜑 → (∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6059adantld 493 . . . . . 6 (𝜑 → ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }𝑥 = (𝐺 Σg 𝑓)) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6112, 60sylbid 242 . . . . 5 (𝜑 → (𝑥 ∈ (𝐺 DProd 𝑆) → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 })))
6261com23 86 . . . 4 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → (𝑥 ∈ (𝐺 DProd 𝑆) → 𝑥 ∈ { 0 })))
638, 62mpdd 43 . . 3 (𝜑 → (𝑥 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) → 𝑥 ∈ { 0 }))
6463ssrdv 3972 . 2 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) ⊆ { 0 })
655simpld 497 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐶))
66 dprdsubg 19145 . . . . 5 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
679subg0cl 18286 . . . . 5 ((𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐶)))
6865, 66, 673syl 18 . . . 4 (𝜑0 ∈ (𝐺 DProd (𝑆𝐶)))
692, 3, 33dprdres 19149 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆𝐷) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)))
7069simpld 497 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
71 dprdsubg 19145 . . . . 5 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
729subg0cl 18286 . . . . 5 ((𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑆𝐷)))
7370, 71, 723syl 18 . . . 4 (𝜑0 ∈ (𝐺 DProd (𝑆𝐷)))
7468, 73elind 4170 . . 3 (𝜑0 ∈ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
7574snssd 4741 . 2 (𝜑 → { 0 } ⊆ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))))
7664, 75eqssd 3983 1 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3494  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  {csn 4566   class class class wbr 5065  cmpt 5145  dom cdm 5554  cres 5556  cfv 6354  (class class class)co 7155  Xcixp 8460   finSupp cfsupp 8832  Basecbs 16482  0gc0g 16712   Σg cgsu 16713  Mndcmnd 17910  Grpcgrp 18102  SubGrpcsubg 18272   DProd cdprd 19114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-0g 16714  df-gsum 16715  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-ghm 18355  df-gim 18398  df-cntz 18446  df-oppg 18473  df-cmn 18907  df-dprd 19116
This theorem is referenced by:  dmdprdsplit  19168  ablfac1eulem  19193  ablfac1eu  19194
  Copyright terms: Public domain W3C validator