MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfadd Structured version   Visualization version   GIF version

Theorem dprdfadd 18340
Description: Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfadd.4 (𝜑𝐻𝑊)
dprdfadd.b + = (+g𝐺)
Assertion
Ref Expression
dprdfadd (𝜑 → ((𝐹𝑓 + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
Distinct variable groups:   + ,   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   + (𝑖)   𝐹(𝑖)   𝐻(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfadd
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
2 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
31, 2dprddomcld 18321 . . . 4 (𝜑𝐼 ∈ V)
4 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
5 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
64, 1, 2, 5dprdfcl 18333 . . . 4 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
7 dprdfadd.4 . . . . 5 (𝜑𝐻𝑊)
84, 1, 2, 7dprdfcl 18333 . . . 4 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ (𝑆𝑥))
9 eqid 2621 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
104, 1, 2, 5, 9dprdff 18332 . . . . 5 (𝜑𝐹:𝐼⟶(Base‘𝐺))
1110feqmptd 6206 . . . 4 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
124, 1, 2, 7, 9dprdff 18332 . . . . 5 (𝜑𝐻:𝐼⟶(Base‘𝐺))
1312feqmptd 6206 . . . 4 (𝜑𝐻 = (𝑥𝐼 ↦ (𝐻𝑥)))
143, 6, 8, 11, 13offval2 6867 . . 3 (𝜑 → (𝐹𝑓 + 𝐻) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))))
151, 2dprdf2 18327 . . . . . 6 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1615ffvelrnda 6315 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
17 dprdfadd.b . . . . . 6 + = (+g𝐺)
1817subgcl 17525 . . . . 5 (((𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹𝑥) ∈ (𝑆𝑥) ∧ (𝐻𝑥) ∈ (𝑆𝑥)) → ((𝐹𝑥) + (𝐻𝑥)) ∈ (𝑆𝑥))
1916, 6, 8, 18syl3anc 1323 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥) + (𝐻𝑥)) ∈ (𝑆𝑥))
204, 1, 2, 5dprdffsupp 18334 . . . . . . 7 (𝜑𝐹 finSupp 0 )
214, 1, 2, 7dprdffsupp 18334 . . . . . . 7 (𝜑𝐻 finSupp 0 )
2220, 21fsuppunfi 8239 . . . . . 6 (𝜑 → ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )) ∈ Fin)
23 ssun1 3754 . . . . . . . . . . 11 (𝐹 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))
2423a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
25 eldprdi.0 . . . . . . . . . . . 12 0 = (0g𝐺)
26 fvex 6158 . . . . . . . . . . . 12 (0g𝐺) ∈ V
2725, 26eqeltri 2694 . . . . . . . . . . 11 0 ∈ V
2827a1i 11 . . . . . . . . . 10 (𝜑0 ∈ V)
2910, 24, 3, 28suppssr 7271 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → (𝐹𝑥) = 0 )
30 ssun2 3755 . . . . . . . . . . 11 (𝐻 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))
3130a1i 11 . . . . . . . . . 10 (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
3212, 31, 3, 28suppssr 7271 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → (𝐻𝑥) = 0 )
3329, 32oveq12d 6622 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ((𝐹𝑥) + (𝐻𝑥)) = ( 0 + 0 ))
34 dprdgrp 18325 . . . . . . . . . . 11 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
351, 34syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
369, 25grpidcl 17371 . . . . . . . . . . 11 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
3735, 36syl 17 . . . . . . . . . 10 (𝜑0 ∈ (Base‘𝐺))
389, 17, 25grplid 17373 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 + 0 ) = 0 )
3935, 37, 38syl2anc 692 . . . . . . . . 9 (𝜑 → ( 0 + 0 ) = 0 )
4039adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ( 0 + 0 ) = 0 )
4133, 40eqtrd 2655 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ((𝐹𝑥) + (𝐻𝑥)) = 0 )
4241, 3suppss2 7274 . . . . . 6 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
43 ssfi 8124 . . . . . 6 ((((𝐹 supp 0 ) ∪ (𝐻 supp 0 )) ∈ Fin ∧ ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))) → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin)
4422, 42, 43syl2anc 692 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin)
45 funmpt 5884 . . . . . . 7 Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥)))
4645a1i 11 . . . . . 6 (𝜑 → Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))))
47 mptexg 6438 . . . . . . 7 (𝐼 ∈ V → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ V)
483, 47syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ V)
49 funisfsupp 8224 . . . . . 6 ((Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∧ (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ V ∧ 0 ∈ V) → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin))
5046, 48, 28, 49syl3anc 1323 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin))
5144, 50mpbird 247 . . . 4 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 )
524, 1, 2, 19, 51dprdwd 18331 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ 𝑊)
5314, 52eqeltrd 2698 . 2 (𝜑 → (𝐹𝑓 + 𝐻) ∈ 𝑊)
54 eqid 2621 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
55 grpmnd 17350 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
5635, 55syl 17 . . 3 (𝜑𝐺 ∈ Mnd)
57 eqid 2621 . . 3 ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) supp 0 )
584, 1, 2, 5, 54dprdfcntz 18335 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
594, 1, 2, 7, 54dprdfcntz 18335 . . 3 (𝜑 → ran 𝐻 ⊆ ((Cntz‘𝐺)‘ran 𝐻))
604, 1, 2, 53, 54dprdfcntz 18335 . . 3 (𝜑 → ran (𝐹𝑓 + 𝐻) ⊆ ((Cntz‘𝐺)‘ran (𝐹𝑓 + 𝐻)))
6156adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐺 ∈ Mnd)
62 vex 3189 . . . . . . . 8 𝑥 ∈ V
6362a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝑥 ∈ V)
64 eldifi 3710 . . . . . . . . . . 11 (𝑘 ∈ (𝐼𝑥) → 𝑘𝐼)
6564adantl 482 . . . . . . . . . 10 ((𝑥𝐼𝑘 ∈ (𝐼𝑥)) → 𝑘𝐼)
66 ffvelrn 6313 . . . . . . . . . 10 ((𝐹:𝐼⟶(Base‘𝐺) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ (Base‘𝐺))
6710, 65, 66syl2an 494 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐹𝑘) ∈ (Base‘𝐺))
6867snssd 4309 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐹𝑘)} ⊆ (Base‘𝐺))
699, 54cntzsubm 17689 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ {(𝐹𝑘)} ⊆ (Base‘𝐺)) → ((Cntz‘𝐺)‘{(𝐹𝑘)}) ∈ (SubMnd‘𝐺))
7061, 68, 69syl2anc 692 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ((Cntz‘𝐺)‘{(𝐹𝑘)}) ∈ (SubMnd‘𝐺))
7112adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐻:𝐼⟶(Base‘𝐺))
72 ffn 6002 . . . . . . . . . 10 (𝐻:𝐼⟶(Base‘𝐺) → 𝐻 Fn 𝐼)
7371, 72syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐻 Fn 𝐼)
74 simprl 793 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝑥𝐼)
75 fnssres 5962 . . . . . . . . 9 ((𝐻 Fn 𝐼𝑥𝐼) → (𝐻𝑥) Fn 𝑥)
7673, 74, 75syl2anc 692 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥) Fn 𝑥)
77 fvres 6164 . . . . . . . . . . 11 (𝑦𝑥 → ((𝐻𝑥)‘𝑦) = (𝐻𝑦))
7877adantl 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((𝐻𝑥)‘𝑦) = (𝐻𝑦))
791ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐺dom DProd 𝑆)
802ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → dom 𝑆 = 𝐼)
8179, 80dprdf2 18327 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑆:𝐼⟶(SubGrp‘𝐺))
8265ad2antlr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑘𝐼)
8381, 82ffvelrnd 6316 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑘) ∈ (SubGrp‘𝐺))
849subgss 17516 . . . . . . . . . . . . 13 ((𝑆𝑘) ∈ (SubGrp‘𝐺) → (𝑆𝑘) ⊆ (Base‘𝐺))
8583, 84syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑘) ⊆ (Base‘𝐺))
865ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐹𝑊)
874, 79, 80, 86dprdfcl 18333 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ (𝑆𝑘))
8882, 87mpdan 701 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐹𝑘) ∈ (𝑆𝑘))
8988snssd 4309 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → {(𝐹𝑘)} ⊆ (𝑆𝑘))
909, 54cntz2ss 17686 . . . . . . . . . . . 12 (((𝑆𝑘) ⊆ (Base‘𝐺) ∧ {(𝐹𝑘)} ⊆ (𝑆𝑘)) → ((Cntz‘𝐺)‘(𝑆𝑘)) ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
9185, 89, 90syl2anc 692 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((Cntz‘𝐺)‘(𝑆𝑘)) ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
9274sselda 3583 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝐼)
93 simpr 477 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝑥)
94 simplrr 800 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑘 ∈ (𝐼𝑥))
9594eldifbd 3568 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ¬ 𝑘𝑥)
96 nelne2 2887 . . . . . . . . . . . . . 14 ((𝑦𝑥 ∧ ¬ 𝑘𝑥) → 𝑦𝑘)
9793, 95, 96syl2anc 692 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝑘)
9879, 80, 92, 82, 97, 54dprdcntz 18328 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑦) ⊆ ((Cntz‘𝐺)‘(𝑆𝑘)))
997ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐻𝑊)
1004, 79, 80, 99dprdfcl 18333 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) ∧ 𝑦𝐼) → (𝐻𝑦) ∈ (𝑆𝑦))
10192, 100mpdan 701 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ (𝑆𝑦))
10298, 101sseldd 3584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ ((Cntz‘𝐺)‘(𝑆𝑘)))
10391, 102sseldd 3584 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
10478, 103eqeltrd 2698 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
105104ralrimiva 2960 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ∀𝑦𝑥 ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
106 ffnfv 6343 . . . . . . . 8 ((𝐻𝑥):𝑥⟶((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ ((𝐻𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)})))
10776, 105, 106sylanbrc 697 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥):𝑥⟶((Cntz‘𝐺)‘{(𝐹𝑘)}))
108 resss 5381 . . . . . . . . . 10 (𝐻𝑥) ⊆ 𝐻
109 rnss 5314 . . . . . . . . . 10 ((𝐻𝑥) ⊆ 𝐻 → ran (𝐻𝑥) ⊆ ran 𝐻)
110108, 109ax-mp 5 . . . . . . . . 9 ran (𝐻𝑥) ⊆ ran 𝐻
11154cntzidss 17691 . . . . . . . . 9 ((ran 𝐻 ⊆ ((Cntz‘𝐺)‘ran 𝐻) ∧ ran (𝐻𝑥) ⊆ ran 𝐻) → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
11259, 110, 111sylancl 693 . . . . . . . 8 (𝜑 → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
113112adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
11421, 28fsuppres 8244 . . . . . . . 8 (𝜑 → (𝐻𝑥) finSupp 0 )
115114adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥) finSupp 0 )
11625, 54, 61, 63, 70, 107, 113, 115gsumzsubmcl 18239 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
117116snssd 4309 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
11871, 74fssresd 6028 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥):𝑥⟶(Base‘𝐺))
1199, 25, 54, 61, 63, 118, 113, 115gsumzcl 18233 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ (Base‘𝐺))
120119snssd 4309 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ (Base‘𝐺))
1219, 54cntzrec 17687 . . . . . 6 (({(𝐺 Σg (𝐻𝑥))} ⊆ (Base‘𝐺) ∧ {(𝐹𝑘)} ⊆ (Base‘𝐺)) → ({(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))})))
122120, 68, 121syl2anc 692 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ({(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))})))
123117, 122mpbid 222 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
124 fvex 6158 . . . . 5 (𝐹𝑘) ∈ V
125124snss 4286 . . . 4 ((𝐹𝑘) ∈ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
126123, 125sylibr 224 . . 3 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐹𝑘) ∈ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
1279, 25, 17, 54, 56, 3, 20, 21, 57, 10, 12, 58, 59, 60, 126gsumzaddlem 18242 . 2 (𝜑 → (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
12853, 127jca 554 1 (𝜑 → ((𝐹𝑓 + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  {crab 2911  Vcvv 3186  cdif 3552  cun 3553  wss 3555  {csn 4148   class class class wbr 4613  cmpt 4673  dom cdm 5074  ran crn 5075  cres 5076  Fun wfun 5841   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  𝑓 cof 6848   supp csupp 7240  Xcixp 7852  Fincfn 7899   finSupp cfsupp 8219  Basecbs 15781  +gcplusg 15862  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215  SubMndcsubmnd 17255  Grpcgrp 17343  SubGrpcsubg 17509  Cntzccntz 17669   DProd cdprd 18313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-gsum 16024  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-subg 17512  df-cntz 17671  df-dprd 18315
This theorem is referenced by:  dprdfsub  18341
  Copyright terms: Public domain W3C validator