MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfadd Structured version   Visualization version   GIF version

Theorem dprdfadd 18619
Description: Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfadd.4 (𝜑𝐻𝑊)
dprdfadd.b + = (+g𝐺)
Assertion
Ref Expression
dprdfadd (𝜑 → ((𝐹𝑓 + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
Distinct variable groups:   + ,   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   + (𝑖)   𝐹(𝑖)   𝐻(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfadd
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
2 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
31, 2dprddomcld 18600 . . . 4 (𝜑𝐼 ∈ V)
4 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
5 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
64, 1, 2, 5dprdfcl 18612 . . . 4 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
7 dprdfadd.4 . . . . 5 (𝜑𝐻𝑊)
84, 1, 2, 7dprdfcl 18612 . . . 4 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ (𝑆𝑥))
9 eqid 2760 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
104, 1, 2, 5, 9dprdff 18611 . . . . 5 (𝜑𝐹:𝐼⟶(Base‘𝐺))
1110feqmptd 6411 . . . 4 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
124, 1, 2, 7, 9dprdff 18611 . . . . 5 (𝜑𝐻:𝐼⟶(Base‘𝐺))
1312feqmptd 6411 . . . 4 (𝜑𝐻 = (𝑥𝐼 ↦ (𝐻𝑥)))
143, 6, 8, 11, 13offval2 7079 . . 3 (𝜑 → (𝐹𝑓 + 𝐻) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))))
151, 2dprdf2 18606 . . . . . 6 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1615ffvelrnda 6522 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
17 dprdfadd.b . . . . . 6 + = (+g𝐺)
1817subgcl 17805 . . . . 5 (((𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹𝑥) ∈ (𝑆𝑥) ∧ (𝐻𝑥) ∈ (𝑆𝑥)) → ((𝐹𝑥) + (𝐻𝑥)) ∈ (𝑆𝑥))
1916, 6, 8, 18syl3anc 1477 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥) + (𝐻𝑥)) ∈ (𝑆𝑥))
204, 1, 2, 5dprdffsupp 18613 . . . . . . 7 (𝜑𝐹 finSupp 0 )
214, 1, 2, 7dprdffsupp 18613 . . . . . . 7 (𝜑𝐻 finSupp 0 )
2220, 21fsuppunfi 8460 . . . . . 6 (𝜑 → ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )) ∈ Fin)
23 ssun1 3919 . . . . . . . . . . 11 (𝐹 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))
2423a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
25 eldprdi.0 . . . . . . . . . . . 12 0 = (0g𝐺)
26 fvex 6362 . . . . . . . . . . . 12 (0g𝐺) ∈ V
2725, 26eqeltri 2835 . . . . . . . . . . 11 0 ∈ V
2827a1i 11 . . . . . . . . . 10 (𝜑0 ∈ V)
2910, 24, 3, 28suppssr 7495 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → (𝐹𝑥) = 0 )
30 ssun2 3920 . . . . . . . . . . 11 (𝐻 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))
3130a1i 11 . . . . . . . . . 10 (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
3212, 31, 3, 28suppssr 7495 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → (𝐻𝑥) = 0 )
3329, 32oveq12d 6831 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ((𝐹𝑥) + (𝐻𝑥)) = ( 0 + 0 ))
34 dprdgrp 18604 . . . . . . . . . . 11 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
351, 34syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
369, 25grpidcl 17651 . . . . . . . . . . 11 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
3735, 36syl 17 . . . . . . . . . 10 (𝜑0 ∈ (Base‘𝐺))
389, 17, 25grplid 17653 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 + 0 ) = 0 )
3935, 37, 38syl2anc 696 . . . . . . . . 9 (𝜑 → ( 0 + 0 ) = 0 )
4039adantr 472 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ( 0 + 0 ) = 0 )
4133, 40eqtrd 2794 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ((𝐹𝑥) + (𝐻𝑥)) = 0 )
4241, 3suppss2 7498 . . . . . 6 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
43 ssfi 8345 . . . . . 6 ((((𝐹 supp 0 ) ∪ (𝐻 supp 0 )) ∈ Fin ∧ ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))) → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin)
4422, 42, 43syl2anc 696 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin)
45 funmpt 6087 . . . . . . 7 Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥)))
4645a1i 11 . . . . . 6 (𝜑 → Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))))
47 mptexg 6648 . . . . . . 7 (𝐼 ∈ V → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ V)
483, 47syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ V)
49 funisfsupp 8445 . . . . . 6 ((Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∧ (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ V ∧ 0 ∈ V) → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin))
5046, 48, 28, 49syl3anc 1477 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin))
5144, 50mpbird 247 . . . 4 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 )
524, 1, 2, 19, 51dprdwd 18610 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ 𝑊)
5314, 52eqeltrd 2839 . 2 (𝜑 → (𝐹𝑓 + 𝐻) ∈ 𝑊)
54 eqid 2760 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
55 grpmnd 17630 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
5635, 55syl 17 . . 3 (𝜑𝐺 ∈ Mnd)
57 eqid 2760 . . 3 ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) supp 0 )
584, 1, 2, 5, 54dprdfcntz 18614 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
594, 1, 2, 7, 54dprdfcntz 18614 . . 3 (𝜑 → ran 𝐻 ⊆ ((Cntz‘𝐺)‘ran 𝐻))
604, 1, 2, 53, 54dprdfcntz 18614 . . 3 (𝜑 → ran (𝐹𝑓 + 𝐻) ⊆ ((Cntz‘𝐺)‘ran (𝐹𝑓 + 𝐻)))
6156adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐺 ∈ Mnd)
62 vex 3343 . . . . . . . 8 𝑥 ∈ V
6362a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝑥 ∈ V)
64 eldifi 3875 . . . . . . . . . . 11 (𝑘 ∈ (𝐼𝑥) → 𝑘𝐼)
6564adantl 473 . . . . . . . . . 10 ((𝑥𝐼𝑘 ∈ (𝐼𝑥)) → 𝑘𝐼)
66 ffvelrn 6520 . . . . . . . . . 10 ((𝐹:𝐼⟶(Base‘𝐺) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ (Base‘𝐺))
6710, 65, 66syl2an 495 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐹𝑘) ∈ (Base‘𝐺))
6867snssd 4485 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐹𝑘)} ⊆ (Base‘𝐺))
699, 54cntzsubm 17968 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ {(𝐹𝑘)} ⊆ (Base‘𝐺)) → ((Cntz‘𝐺)‘{(𝐹𝑘)}) ∈ (SubMnd‘𝐺))
7061, 68, 69syl2anc 696 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ((Cntz‘𝐺)‘{(𝐹𝑘)}) ∈ (SubMnd‘𝐺))
7112adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐻:𝐼⟶(Base‘𝐺))
72 ffn 6206 . . . . . . . . . 10 (𝐻:𝐼⟶(Base‘𝐺) → 𝐻 Fn 𝐼)
7371, 72syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐻 Fn 𝐼)
74 simprl 811 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝑥𝐼)
75 fnssres 6165 . . . . . . . . 9 ((𝐻 Fn 𝐼𝑥𝐼) → (𝐻𝑥) Fn 𝑥)
7673, 74, 75syl2anc 696 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥) Fn 𝑥)
77 fvres 6368 . . . . . . . . . . 11 (𝑦𝑥 → ((𝐻𝑥)‘𝑦) = (𝐻𝑦))
7877adantl 473 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((𝐻𝑥)‘𝑦) = (𝐻𝑦))
791ad2antrr 764 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐺dom DProd 𝑆)
802ad2antrr 764 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → dom 𝑆 = 𝐼)
8179, 80dprdf2 18606 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑆:𝐼⟶(SubGrp‘𝐺))
8265ad2antlr 765 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑘𝐼)
8381, 82ffvelrnd 6523 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑘) ∈ (SubGrp‘𝐺))
849subgss 17796 . . . . . . . . . . . . 13 ((𝑆𝑘) ∈ (SubGrp‘𝐺) → (𝑆𝑘) ⊆ (Base‘𝐺))
8583, 84syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑘) ⊆ (Base‘𝐺))
865ad2antrr 764 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐹𝑊)
874, 79, 80, 86dprdfcl 18612 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ (𝑆𝑘))
8882, 87mpdan 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐹𝑘) ∈ (𝑆𝑘))
8988snssd 4485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → {(𝐹𝑘)} ⊆ (𝑆𝑘))
909, 54cntz2ss 17965 . . . . . . . . . . . 12 (((𝑆𝑘) ⊆ (Base‘𝐺) ∧ {(𝐹𝑘)} ⊆ (𝑆𝑘)) → ((Cntz‘𝐺)‘(𝑆𝑘)) ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
9185, 89, 90syl2anc 696 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((Cntz‘𝐺)‘(𝑆𝑘)) ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
9274sselda 3744 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝐼)
93 simpr 479 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝑥)
94 simplrr 820 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑘 ∈ (𝐼𝑥))
9594eldifbd 3728 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ¬ 𝑘𝑥)
96 nelne2 3029 . . . . . . . . . . . . . 14 ((𝑦𝑥 ∧ ¬ 𝑘𝑥) → 𝑦𝑘)
9793, 95, 96syl2anc 696 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝑘)
9879, 80, 92, 82, 97, 54dprdcntz 18607 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑦) ⊆ ((Cntz‘𝐺)‘(𝑆𝑘)))
997ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐻𝑊)
1004, 79, 80, 99dprdfcl 18612 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) ∧ 𝑦𝐼) → (𝐻𝑦) ∈ (𝑆𝑦))
10192, 100mpdan 705 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ (𝑆𝑦))
10298, 101sseldd 3745 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ ((Cntz‘𝐺)‘(𝑆𝑘)))
10391, 102sseldd 3745 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
10478, 103eqeltrd 2839 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
105104ralrimiva 3104 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ∀𝑦𝑥 ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
106 ffnfv 6551 . . . . . . . 8 ((𝐻𝑥):𝑥⟶((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ ((𝐻𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)})))
10776, 105, 106sylanbrc 701 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥):𝑥⟶((Cntz‘𝐺)‘{(𝐹𝑘)}))
108 resss 5580 . . . . . . . . . 10 (𝐻𝑥) ⊆ 𝐻
109 rnss 5509 . . . . . . . . . 10 ((𝐻𝑥) ⊆ 𝐻 → ran (𝐻𝑥) ⊆ ran 𝐻)
110108, 109ax-mp 5 . . . . . . . . 9 ran (𝐻𝑥) ⊆ ran 𝐻
11154cntzidss 17970 . . . . . . . . 9 ((ran 𝐻 ⊆ ((Cntz‘𝐺)‘ran 𝐻) ∧ ran (𝐻𝑥) ⊆ ran 𝐻) → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
11259, 110, 111sylancl 697 . . . . . . . 8 (𝜑 → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
113112adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
11421, 28fsuppres 8465 . . . . . . . 8 (𝜑 → (𝐻𝑥) finSupp 0 )
115114adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥) finSupp 0 )
11625, 54, 61, 63, 70, 107, 113, 115gsumzsubmcl 18518 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
117116snssd 4485 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
11871, 74fssresd 6232 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥):𝑥⟶(Base‘𝐺))
1199, 25, 54, 61, 63, 118, 113, 115gsumzcl 18512 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ (Base‘𝐺))
120119snssd 4485 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ (Base‘𝐺))
1219, 54cntzrec 17966 . . . . . 6 (({(𝐺 Σg (𝐻𝑥))} ⊆ (Base‘𝐺) ∧ {(𝐹𝑘)} ⊆ (Base‘𝐺)) → ({(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))})))
122120, 68, 121syl2anc 696 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ({(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))})))
123117, 122mpbid 222 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
124 fvex 6362 . . . . 5 (𝐹𝑘) ∈ V
125124snss 4460 . . . 4 ((𝐹𝑘) ∈ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
126123, 125sylibr 224 . . 3 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐹𝑘) ∈ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
1279, 25, 17, 54, 56, 3, 20, 21, 57, 10, 12, 58, 59, 60, 126gsumzaddlem 18521 . 2 (𝜑 → (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
12853, 127jca 555 1 (𝜑 → ((𝐹𝑓 + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  {crab 3054  Vcvv 3340  cdif 3712  cun 3713  wss 3715  {csn 4321   class class class wbr 4804  cmpt 4881  dom cdm 5266  ran crn 5267  cres 5268  Fun wfun 6043   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6813  𝑓 cof 7060   supp csupp 7463  Xcixp 8074  Fincfn 8121   finSupp cfsupp 8440  Basecbs 16059  +gcplusg 16143  0gc0g 16302   Σg cgsu 16303  Mndcmnd 17495  SubMndcsubmnd 17535  Grpcgrp 17623  SubGrpcsubg 17789  Cntzccntz 17948   DProd cdprd 18592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-gsum 16305  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-subg 17792  df-cntz 17950  df-dprd 18594
This theorem is referenced by:  dprdfsub  18620
  Copyright terms: Public domain W3C validator