MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdff Structured version   Visualization version   GIF version

Theorem dprdff 19133
Description: A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdff.3 (𝜑𝐹𝑊)
dprdff.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
dprdff (𝜑𝐹:𝐼𝐵)
Distinct variable groups:   ,𝐹   ,𝑖,𝐼   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐵(,𝑖)   𝐹(𝑖)   𝐺(,𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dprdff.3 . . . 4 (𝜑𝐹𝑊)
2 dprdff.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
3 dprdff.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
4 dprdff.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
52, 3, 4dprdw 19131 . . . 4 (𝜑 → (𝐹𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 )))
61, 5mpbid 234 . . 3 (𝜑 → (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 ))
76simp1d 1138 . 2 (𝜑𝐹 Fn 𝐼)
86simp2d 1139 . . 3 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))
93, 4dprdf2 19128 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
109ffvelrnda 6850 . . . . . 6 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
11 dprdff.b . . . . . . 7 𝐵 = (Base‘𝐺)
1211subgss 18279 . . . . . 6 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (𝑆𝑥) ⊆ 𝐵)
1310, 12syl 17 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ 𝐵)
1413sseld 3965 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥) ∈ (𝑆𝑥) → (𝐹𝑥) ∈ 𝐵))
1514ralimdva 3177 . . 3 (𝜑 → (∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵))
168, 15mpd 15 . 2 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵)
17 ffnfv 6881 . 2 (𝐹:𝐼𝐵 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵))
187, 16, 17sylanbrc 585 1 (𝜑𝐹:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  wss 3935   class class class wbr 5065  dom cdm 5554   Fn wfn 6349  wf 6350  cfv 6354  Xcixp 8460   finSupp cfsupp 8832  Basecbs 16482  SubGrpcsubg 18272   DProd cdprd 19114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-ixp 8461  df-subg 18275  df-dprd 19116
This theorem is referenced by:  dprdfcntz  19136  dprdssv  19137  dprdfid  19138  dprdfinv  19140  dprdfadd  19141  dprdfsub  19142  dprdfeq0  19143  dprdf11  19144  dprdlub  19147  dmdprdsplitlem  19158  dprddisj2  19160  dpjidcl  19179
  Copyright terms: Public domain W3C validator