MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdss Structured version   Visualization version   GIF version

Theorem dprdss 18474
Description: Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdss.1 (𝜑𝐺dom DProd 𝑇)
dprdss.2 (𝜑 → dom 𝑇 = 𝐼)
dprdss.3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdss.4 ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ (𝑇𝑘))
Assertion
Ref Expression
dprdss (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)))
Distinct variable groups:   𝑘,𝐺   𝜑,𝑘   𝑆,𝑘   𝑇,𝑘   𝑘,𝐼

Proof of Theorem dprdss
Dummy variables 𝑓 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2651 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2651 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dprdss.1 . . . 4 (𝜑𝐺dom DProd 𝑇)
5 dprdgrp 18450 . . . 4 (𝐺dom DProd 𝑇𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 dprdss.2 . . . 4 (𝜑 → dom 𝑇 = 𝐼)
84, 7dprddomcld 18446 . . 3 (𝜑𝐼 ∈ V)
9 dprdss.3 . . 3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
10 dprdss.4 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑆𝑘) ⊆ (𝑇𝑘))
1110ralrimiva 2995 . . . . . 6 (𝜑 → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
12 fveq2 6229 . . . . . . . 8 (𝑘 = 𝑥 → (𝑆𝑘) = (𝑆𝑥))
13 fveq2 6229 . . . . . . . 8 (𝑘 = 𝑥 → (𝑇𝑘) = (𝑇𝑥))
1412, 13sseq12d 3667 . . . . . . 7 (𝑘 = 𝑥 → ((𝑆𝑘) ⊆ (𝑇𝑘) ↔ (𝑆𝑥) ⊆ (𝑇𝑥)))
1514rspcv 3336 . . . . . 6 (𝑥𝐼 → (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → (𝑆𝑥) ⊆ (𝑇𝑥)))
1611, 15mpan9 485 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ (𝑇𝑥))
17163ad2antr1 1246 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑇𝑥))
184adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝐺dom DProd 𝑇)
197adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → dom 𝑇 = 𝐼)
20 simpr1 1087 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑥𝐼)
21 simpr2 1088 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑦𝐼)
22 simpr3 1089 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑥𝑦)
2318, 19, 20, 21, 22, 1dprdcntz 18453 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑥) ⊆ ((Cntz‘𝐺)‘(𝑇𝑦)))
244, 7dprdf2 18452 . . . . . . . . 9 (𝜑𝑇:𝐼⟶(SubGrp‘𝐺))
2524adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → 𝑇:𝐼⟶(SubGrp‘𝐺))
2625, 21ffvelrnd 6400 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑦) ∈ (SubGrp‘𝐺))
27 eqid 2651 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
2827subgss 17642 . . . . . . 7 ((𝑇𝑦) ∈ (SubGrp‘𝐺) → (𝑇𝑦) ⊆ (Base‘𝐺))
2926, 28syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑦) ⊆ (Base‘𝐺))
3011adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
31 fveq2 6229 . . . . . . . . 9 (𝑘 = 𝑦 → (𝑆𝑘) = (𝑆𝑦))
32 fveq2 6229 . . . . . . . . 9 (𝑘 = 𝑦 → (𝑇𝑘) = (𝑇𝑦))
3331, 32sseq12d 3667 . . . . . . . 8 (𝑘 = 𝑦 → ((𝑆𝑘) ⊆ (𝑇𝑘) ↔ (𝑆𝑦) ⊆ (𝑇𝑦)))
3433rspcv 3336 . . . . . . 7 (𝑦𝐼 → (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → (𝑆𝑦) ⊆ (𝑇𝑦)))
3521, 30, 34sylc 65 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑦) ⊆ (𝑇𝑦))
3627, 1cntz2ss 17811 . . . . . 6 (((𝑇𝑦) ⊆ (Base‘𝐺) ∧ (𝑆𝑦) ⊆ (𝑇𝑦)) → ((Cntz‘𝐺)‘(𝑇𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3729, 35, 36syl2anc 694 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → ((Cntz‘𝐺)‘(𝑇𝑦)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3823, 37sstrd 3646 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑇𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
3917, 38sstrd 3646 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
406adantr 480 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
4127subgacs 17676 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
42 acsmre 16360 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4340, 41, 423syl 18 . . . . . 6 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
44 difss 3770 . . . . . . . . 9 (𝐼 ∖ {𝑥}) ⊆ 𝐼
4511adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐼) → ∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘))
46 ssralv 3699 . . . . . . . . 9 ((𝐼 ∖ {𝑥}) ⊆ 𝐼 → (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘)))
4744, 45, 46mpsyl 68 . . . . . . . 8 ((𝜑𝑥𝐼) → ∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘))
48 ss2iun 4568 . . . . . . . 8 (∀𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ (𝑇𝑘) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘))
4947, 48syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) ⊆ 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘))
509adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
51 ffun 6086 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → Fun 𝑆)
52 funiunfv 6546 . . . . . . . 8 (Fun 𝑆 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) = (𝑆 “ (𝐼 ∖ {𝑥})))
5350, 51, 523syl 18 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑆𝑘) = (𝑆 “ (𝐼 ∖ {𝑥})))
5424adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑇:𝐼⟶(SubGrp‘𝐺))
55 ffun 6086 . . . . . . . 8 (𝑇:𝐼⟶(SubGrp‘𝐺) → Fun 𝑇)
56 funiunfv 6546 . . . . . . . 8 (Fun 𝑇 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘) = (𝑇 “ (𝐼 ∖ {𝑥})))
5754, 55, 563syl 18 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑘 ∈ (𝐼 ∖ {𝑥})(𝑇𝑘) = (𝑇 “ (𝐼 ∖ {𝑥})))
5849, 53, 573sstr3d 3680 . . . . . 6 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (𝑇 “ (𝐼 ∖ {𝑥})))
59 imassrn 5512 . . . . . . . 8 (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑇
60 frn 6091 . . . . . . . . . 10 (𝑇:𝐼⟶(SubGrp‘𝐺) → ran 𝑇 ⊆ (SubGrp‘𝐺))
6154, 60syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → ran 𝑇 ⊆ (SubGrp‘𝐺))
62 mresspw 16299 . . . . . . . . . 10 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
6343, 62syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
6461, 63sstrd 3646 . . . . . . . 8 ((𝜑𝑥𝐼) → ran 𝑇 ⊆ 𝒫 (Base‘𝐺))
6559, 64syl5ss 3647 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
66 sspwuni 4643 . . . . . . 7 ((𝑇 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6765, 66sylib 208 . . . . . 6 ((𝜑𝑥𝐼) → (𝑇 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6843, 3, 58, 67mrcssd 16331 . . . . 5 ((𝜑𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥}))))
69 ss2in 3873 . . . . 5 (((𝑆𝑥) ⊆ (𝑇𝑥) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))))
7016, 68, 69syl2anc 694 . . . 4 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))))
714adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐺dom DProd 𝑇)
727adantr 480 . . . . 5 ((𝜑𝑥𝐼) → dom 𝑇 = 𝐼)
73 simpr 476 . . . . 5 ((𝜑𝑥𝐼) → 𝑥𝐼)
7471, 72, 73, 2, 3dprddisj 18454 . . . 4 ((𝜑𝑥𝐼) → ((𝑇𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑇 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)})
7570, 74sseqtrd 3674 . . 3 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ {(0g𝐺)})
761, 2, 3, 6, 8, 9, 39, 75dmdprdd 18444 . 2 (𝜑𝐺dom DProd 𝑆)
774a1d 25 . . . . 5 (𝜑 → (𝐺dom DProd 𝑆𝐺dom DProd 𝑇))
78 ss2ixp 7963 . . . . . . 7 (∀𝑘𝐼 (𝑆𝑘) ⊆ (𝑇𝑘) → X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘))
7911, 78syl 17 . . . . . 6 (𝜑X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘))
80 rabss2 3718 . . . . . 6 (X𝑘𝐼 (𝑆𝑘) ⊆ X𝑘𝐼 (𝑇𝑘) → {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} ⊆ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)})
81 ssrexv 3700 . . . . . 6 ({X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} ⊆ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)} → (∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)))
8279, 80, 813syl 18 . . . . 5 (𝜑 → (∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓) → ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)))
8377, 82anim12d 585 . . . 4 (𝜑 → ((𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓)) → (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
84 fdm 6089 . . . . 5 (𝑆:𝐼⟶(SubGrp‘𝐺) → dom 𝑆 = 𝐼)
85 eqid 2651 . . . . . 6 {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)} = {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}
862, 85eldprd 18449 . . . . 5 (dom 𝑆 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
879, 84, 863syl 18 . . . 4 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑆𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
88 eqid 2651 . . . . . 6 {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)} = {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}
892, 88eldprd 18449 . . . . 5 (dom 𝑇 = 𝐼 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
907, 89syl 17 . . . 4 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑇) ↔ (𝐺dom DProd 𝑇 ∧ ∃𝑓 ∈ {X𝑘𝐼 (𝑇𝑘) ∣ finSupp (0g𝐺)}𝑎 = (𝐺 Σg 𝑓))))
9183, 87, 903imtr4d 283 . . 3 (𝜑 → (𝑎 ∈ (𝐺 DProd 𝑆) → 𝑎 ∈ (𝐺 DProd 𝑇)))
9291ssrdv 3642 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇))
9376, 92jca 553 1 (𝜑 → (𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) ⊆ (𝐺 DProd 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  cdif 3604  cin 3606  wss 3607  𝒫 cpw 4191  {csn 4210   cuni 4468   ciun 4552   class class class wbr 4685  dom cdm 5143  ran crn 5144  cima 5146  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  Xcixp 7950   finSupp cfsupp 8316  Basecbs 15904  0gc0g 16147   Σg cgsu 16148  Moorecmre 16289  mrClscmrc 16290  ACScacs 16292  Grpcgrp 17469  SubGrpcsubg 17635  Cntzccntz 17794   DProd cdprd 18438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-subg 17638  df-cntz 17796  df-dprd 18440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator