Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsubg Structured version   Visualization version   GIF version

Theorem dprdsubg 18347
 Description: The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdsubg (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))

Proof of Theorem dprdsubg
Dummy variables 𝑓 𝑔 𝑖 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . 4 (Base‘𝐺) = (Base‘𝐺)
21dprdssv 18339 . . 3 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
32a1i 11 . 2 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ⊆ (Base‘𝐺))
4 eqid 2621 . . . 4 (0g𝐺) = (0g𝐺)
5 eqid 2621 . . . 4 {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} = {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}
6 id 22 . . . 4 (𝐺dom DProd 𝑆𝐺dom DProd 𝑆)
7 eqidd 2622 . . . 4 (𝐺dom DProd 𝑆 → dom 𝑆 = dom 𝑆)
8 fvex 6160 . . . . . 6 (0g𝐺) ∈ V
9 fnconstg 6052 . . . . . 6 ((0g𝐺) ∈ V → (dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆)
108, 9mp1i 13 . . . . 5 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆)
118fvconst2 6426 . . . . . . . 8 (𝑘 ∈ dom 𝑆 → ((dom 𝑆 × {(0g𝐺)})‘𝑘) = (0g𝐺))
1211adantl 482 . . . . . . 7 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g𝐺)})‘𝑘) = (0g𝐺))
13 dprdf 18329 . . . . . . . . 9 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
1413ffvelrnda 6317 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → (𝑆𝑘) ∈ (SubGrp‘𝐺))
154subg0cl 17526 . . . . . . . 8 ((𝑆𝑘) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑆𝑘))
1614, 15syl 17 . . . . . . 7 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → (0g𝐺) ∈ (𝑆𝑘))
1712, 16eqeltrd 2698 . . . . . 6 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘))
1817ralrimiva 2960 . . . . 5 (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘))
19 df-nel 2894 . . . . . . . 8 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
20 dprddomprc 18323 . . . . . . . 8 (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
2119, 20sylbir 225 . . . . . . 7 (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆)
2221con4i 113 . . . . . 6 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
238a1i 11 . . . . . 6 (𝐺dom DProd 𝑆 → (0g𝐺) ∈ V)
2422, 23fczfsuppd 8240 . . . . 5 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) finSupp (0g𝐺))
255, 6, 7dprdw 18333 . . . . 5 (𝐺dom DProd 𝑆 → ((dom 𝑆 × {(0g𝐺)}) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ↔ ((dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆 ∧ ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘) ∧ (dom 𝑆 × {(0g𝐺)}) finSupp (0g𝐺))))
2610, 18, 24, 25mpbir3and 1243 . . . 4 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
274, 5, 6, 7, 26eldprdi 18341 . . 3 (𝐺dom DProd 𝑆 → (𝐺 Σg (dom 𝑆 × {(0g𝐺)})) ∈ (𝐺 DProd 𝑆))
28 ne0i 3899 . . 3 ((𝐺 Σg (dom 𝑆 × {(0g𝐺)})) ∈ (𝐺 DProd 𝑆) → (𝐺 DProd 𝑆) ≠ ∅)
2927, 28syl 17 . 2 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ≠ ∅)
30 eqid 2621 . . . . 5 dom 𝑆 = dom 𝑆
314, 5eldprd 18327 . . . . . . 7 (dom 𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓))))
3231baibd 947 . . . . . 6 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓)))
334, 5eldprd 18327 . . . . . . 7 (dom 𝑆 = dom 𝑆 → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
3433baibd 947 . . . . . 6 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)))
3532, 34anbi12d 746 . . . . 5 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
3630, 35mpan 705 . . . 4 (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
37 reeanv 3097 . . . . 5 (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)))
38 simpl 473 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝐺dom DProd 𝑆)
39 eqidd 2622 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → dom 𝑆 = dom 𝑆)
40 simprl 793 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
41 simprr 795 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
42 eqid 2621 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
434, 5, 38, 39, 40, 41, 42dprdfsub 18344 . . . . . . . . 9 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝑓𝑓 (-g𝐺)𝑔) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ (𝐺 Σg (𝑓𝑓 (-g𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔))))
4443simprd 479 . . . . . . . 8 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝐺 Σg (𝑓𝑓 (-g𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)))
4543simpld 475 . . . . . . . . 9 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝑓𝑓 (-g𝐺)𝑔) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
464, 5, 38, 39, 45eldprdi 18341 . . . . . . . 8 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝐺 Σg (𝑓𝑓 (-g𝐺)𝑔)) ∈ (𝐺 DProd 𝑆))
4744, 46eqeltrrd 2699 . . . . . . 7 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆))
48 oveq12 6616 . . . . . . . 8 ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)))
4948eleq1d 2683 . . . . . . 7 ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → ((𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆) ↔ ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆)))
5047, 49syl5ibrcom 237 . . . . . 6 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5150rexlimdvva 3031 . . . . 5 (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5237, 51syl5bir 233 . . . 4 (𝐺dom DProd 𝑆 → ((∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5336, 52sylbid 230 . . 3 (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5453ralrimivv 2964 . 2 (𝐺dom DProd 𝑆 → ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))
55 dprdgrp 18328 . . 3 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
561, 42issubg4 17537 . . 3 (𝐺 ∈ Grp → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))))
5755, 56syl 17 . 2 (𝐺dom DProd 𝑆 → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))))
583, 29, 54, 57mpbir3and 1243 1 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ∉ wnel 2893  ∀wral 2907  ∃wrex 2908  {crab 2911  Vcvv 3186   ⊆ wss 3556  ∅c0 3893  {csn 4150   class class class wbr 4615   × cxp 5074  dom cdm 5076   Fn wfn 5844  ‘cfv 5849  (class class class)co 6607   ∘𝑓 cof 6851  Xcixp 7855   finSupp cfsupp 8222  Basecbs 15784  0gc0g 16024   Σg cgsu 16025  Grpcgrp 17346  -gcsg 17348  SubGrpcsubg 17512   DProd cdprd 18316 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-map 7807  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-oi 8362  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-n0 11240  df-z 11325  df-uz 11635  df-fz 12272  df-fzo 12410  df-seq 12745  df-hash 13061  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-0g 16026  df-gsum 16027  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-submnd 17260  df-grp 17349  df-minusg 17350  df-sbg 17351  df-subg 17515  df-ghm 17582  df-gim 17625  df-cntz 17674  df-oppg 17700  df-cmn 18119  df-dprd 18318 This theorem is referenced by:  dprdspan  18350  dprdz  18353  dprdcntz2  18361  dprddisj2  18362  dprd2da  18365  dmdprdsplit2lem  18368  dmdprdsplit2  18369  dprdsplit  18371  dpjf  18380  dpjidcl  18381  dpjlid  18384  dpjghm  18386  ablfac1c  18394  ablfac1eulem  18395  ablfac1eu  18396  pgpfaclem1  18404
 Copyright terms: Public domain W3C validator