![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdub | Structured version Visualization version GIF version |
Description: Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdub.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdub.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdub.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dprdub | ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
2 | eqid 2651 | . . . . . 6 ⊢ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} | |
3 | dprdub.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝐺dom DProd 𝑆) |
5 | dprdub.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → dom 𝑆 = 𝐼) |
7 | dprdub.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑋 ∈ 𝐼) |
9 | simpr 476 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑥 ∈ (𝑆‘𝑋)) | |
10 | eqid 2651 | . . . . . 6 ⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) | |
11 | 1, 2, 4, 6, 8, 9, 10 | dprdfid 18462 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) = 𝑥)) |
12 | 11 | simprd 478 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) = 𝑥) |
13 | 11 | simpld 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
14 | 1, 2, 4, 6, 13 | eldprdi 18463 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) ∈ (𝐺 DProd 𝑆)) |
15 | 12, 14 | eqeltrrd 2731 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑥 ∈ (𝐺 DProd 𝑆)) |
16 | 15 | ex 449 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑆‘𝑋) → 𝑥 ∈ (𝐺 DProd 𝑆))) |
17 | 16 | ssrdv 3642 | 1 ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 ⊆ wss 3607 ifcif 4119 class class class wbr 4685 ↦ cmpt 4762 dom cdm 5143 ‘cfv 5926 (class class class)co 6690 Xcixp 7950 finSupp cfsupp 8316 0gc0g 16147 Σg cgsu 16148 DProd cdprd 18438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-0g 16149 df-gsum 16150 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-grp 17472 df-mulg 17588 df-subg 17638 df-cntz 17796 df-cmn 18241 df-dprd 18440 |
This theorem is referenced by: dprdspan 18472 dprd2dlem2 18485 dprd2da 18487 dmdprdsplit2lem 18490 dprdsplit 18493 dpjrid 18507 ablfac1c 18516 |
Copyright terms: Public domain | W3C validator |