MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dquartlem2 Structured version   Visualization version   GIF version

Theorem dquartlem2 24778
Description: Lemma for dquart 24779. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dquart.b (𝜑𝐵 ∈ ℂ)
dquart.c (𝜑𝐶 ∈ ℂ)
dquart.x (𝜑𝑋 ∈ ℂ)
dquart.s (𝜑𝑆 ∈ ℂ)
dquart.m (𝜑𝑀 = ((2 · 𝑆)↑2))
dquart.m0 (𝜑𝑀 ≠ 0)
dquart.i (𝜑𝐼 ∈ ℂ)
dquart.i2 (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆)))
dquart.d (𝜑𝐷 ∈ ℂ)
dquart.3 (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))) = 0)
Assertion
Ref Expression
dquartlem2 (𝜑 → ((((𝑀 + 𝐵) / 2)↑2) − (((𝐶↑2) / 4) / 𝑀)) = 𝐷)

Proof of Theorem dquartlem2
StepHypRef Expression
1 dquart.m . . . . . . 7 (𝜑𝑀 = ((2 · 𝑆)↑2))
2 2cn 11283 . . . . . . . . 9 2 ∈ ℂ
3 dquart.s . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
4 mulcl 10212 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (2 · 𝑆) ∈ ℂ)
52, 3, 4sylancr 698 . . . . . . . 8 (𝜑 → (2 · 𝑆) ∈ ℂ)
65sqcld 13200 . . . . . . 7 (𝜑 → ((2 · 𝑆)↑2) ∈ ℂ)
71, 6eqeltrd 2839 . . . . . 6 (𝜑𝑀 ∈ ℂ)
8 dquart.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
97, 8addcld 10251 . . . . 5 (𝜑 → (𝑀 + 𝐵) ∈ ℂ)
102a1i 11 . . . . 5 (𝜑 → 2 ∈ ℂ)
11 2ne0 11305 . . . . . 6 2 ≠ 0
1211a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
139, 10, 12sqdivd 13215 . . . 4 (𝜑 → (((𝑀 + 𝐵) / 2)↑2) = (((𝑀 + 𝐵)↑2) / (2↑2)))
14 sq2 13154 . . . . 5 (2↑2) = 4
1514oveq2i 6824 . . . 4 (((𝑀 + 𝐵)↑2) / (2↑2)) = (((𝑀 + 𝐵)↑2) / 4)
1613, 15syl6eq 2810 . . 3 (𝜑 → (((𝑀 + 𝐵) / 2)↑2) = (((𝑀 + 𝐵)↑2) / 4))
1716oveq1d 6828 . 2 (𝜑 → ((((𝑀 + 𝐵) / 2)↑2) − (((𝐶↑2) / 4) / 𝑀)) = ((((𝑀 + 𝐵)↑2) / 4) − (((𝐶↑2) / 4) / 𝑀)))
189sqcld 13200 . . . . 5 (𝜑 → ((𝑀 + 𝐵)↑2) ∈ ℂ)
19 4cn 11290 . . . . . 6 4 ∈ ℂ
2019a1i 11 . . . . 5 (𝜑 → 4 ∈ ℂ)
21 4ne0 11309 . . . . . 6 4 ≠ 0
2221a1i 11 . . . . 5 (𝜑 → 4 ≠ 0)
2318, 20, 22divcld 10993 . . . 4 (𝜑 → (((𝑀 + 𝐵)↑2) / 4) ∈ ℂ)
24 dquart.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
2524sqcld 13200 . . . . . 6 (𝜑 → (𝐶↑2) ∈ ℂ)
2625, 20, 22divcld 10993 . . . . 5 (𝜑 → ((𝐶↑2) / 4) ∈ ℂ)
27 dquart.m0 . . . . 5 (𝜑𝑀 ≠ 0)
2826, 7, 27divcld 10993 . . . 4 (𝜑 → (((𝐶↑2) / 4) / 𝑀) ∈ ℂ)
2923, 28subcld 10584 . . 3 (𝜑 → ((((𝑀 + 𝐵)↑2) / 4) − (((𝐶↑2) / 4) / 𝑀)) ∈ ℂ)
30 dquart.d . . 3 (𝜑𝐷 ∈ ℂ)
3123, 28, 7subdird 10679 . . . 4 (𝜑 → (((((𝑀 + 𝐵)↑2) / 4) − (((𝐶↑2) / 4) / 𝑀)) · 𝑀) = (((((𝑀 + 𝐵)↑2) / 4) · 𝑀) − ((((𝐶↑2) / 4) / 𝑀) · 𝑀)))
3218, 7, 20, 22div23d 11030 . . . . . 6 (𝜑 → ((((𝑀 + 𝐵)↑2) · 𝑀) / 4) = ((((𝑀 + 𝐵)↑2) / 4) · 𝑀))
3332eqcomd 2766 . . . . 5 (𝜑 → ((((𝑀 + 𝐵)↑2) / 4) · 𝑀) = ((((𝑀 + 𝐵)↑2) · 𝑀) / 4))
3426, 7, 27divcan1d 10994 . . . . 5 (𝜑 → ((((𝐶↑2) / 4) / 𝑀) · 𝑀) = ((𝐶↑2) / 4))
3533, 34oveq12d 6831 . . . 4 (𝜑 → (((((𝑀 + 𝐵)↑2) / 4) · 𝑀) − ((((𝐶↑2) / 4) / 𝑀) · 𝑀)) = (((((𝑀 + 𝐵)↑2) · 𝑀) / 4) − ((𝐶↑2) / 4)))
36 binom2 13173 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑀 + 𝐵)↑2) = (((𝑀↑2) + (2 · (𝑀 · 𝐵))) + (𝐵↑2)))
377, 8, 36syl2anc 696 . . . . . . . . . . . 12 (𝜑 → ((𝑀 + 𝐵)↑2) = (((𝑀↑2) + (2 · (𝑀 · 𝐵))) + (𝐵↑2)))
3837oveq1d 6828 . . . . . . . . . . 11 (𝜑 → (((𝑀 + 𝐵)↑2) · 𝑀) = ((((𝑀↑2) + (2 · (𝑀 · 𝐵))) + (𝐵↑2)) · 𝑀))
397sqcld 13200 . . . . . . . . . . . . 13 (𝜑 → (𝑀↑2) ∈ ℂ)
407, 8mulcld 10252 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · 𝐵) ∈ ℂ)
41 mulcl 10212 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑀 · 𝐵) ∈ ℂ) → (2 · (𝑀 · 𝐵)) ∈ ℂ)
422, 40, 41sylancr 698 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝑀 · 𝐵)) ∈ ℂ)
4339, 42addcld 10251 . . . . . . . . . . . 12 (𝜑 → ((𝑀↑2) + (2 · (𝑀 · 𝐵))) ∈ ℂ)
448sqcld 13200 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℂ)
4543, 44, 7adddird 10257 . . . . . . . . . . 11 (𝜑 → ((((𝑀↑2) + (2 · (𝑀 · 𝐵))) + (𝐵↑2)) · 𝑀) = ((((𝑀↑2) + (2 · (𝑀 · 𝐵))) · 𝑀) + ((𝐵↑2) · 𝑀)))
4639, 42, 7adddird 10257 . . . . . . . . . . . . 13 (𝜑 → (((𝑀↑2) + (2 · (𝑀 · 𝐵))) · 𝑀) = (((𝑀↑2) · 𝑀) + ((2 · (𝑀 · 𝐵)) · 𝑀)))
47 df-3 11272 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
4847oveq2i 6824 . . . . . . . . . . . . . . 15 (𝑀↑3) = (𝑀↑(2 + 1))
49 2nn0 11501 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
50 expp1 13061 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝑀↑(2 + 1)) = ((𝑀↑2) · 𝑀))
517, 49, 50sylancl 697 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(2 + 1)) = ((𝑀↑2) · 𝑀))
5248, 51syl5req 2807 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑2) · 𝑀) = (𝑀↑3))
53 mulcl 10212 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ)
542, 8, 53sylancr 698 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝐵) ∈ ℂ)
5554, 7, 7mulassd 10255 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝐵) · 𝑀) · 𝑀) = ((2 · 𝐵) · (𝑀 · 𝑀)))
5610, 7, 8mulassd 10255 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑀) · 𝐵) = (2 · (𝑀 · 𝐵)))
5710, 7, 8mul32d 10438 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑀) · 𝐵) = ((2 · 𝐵) · 𝑀))
5856, 57eqtr3d 2796 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · (𝑀 · 𝐵)) = ((2 · 𝐵) · 𝑀))
5958oveq1d 6828 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · (𝑀 · 𝐵)) · 𝑀) = (((2 · 𝐵) · 𝑀) · 𝑀))
607sqvald 13199 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
6160oveq2d 6829 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝐵) · (𝑀↑2)) = ((2 · 𝐵) · (𝑀 · 𝑀)))
6255, 59, 613eqtr4d 2804 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (𝑀 · 𝐵)) · 𝑀) = ((2 · 𝐵) · (𝑀↑2)))
6352, 62oveq12d 6831 . . . . . . . . . . . . 13 (𝜑 → (((𝑀↑2) · 𝑀) + ((2 · (𝑀 · 𝐵)) · 𝑀)) = ((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))))
6446, 63eqtrd 2794 . . . . . . . . . . . 12 (𝜑 → (((𝑀↑2) + (2 · (𝑀 · 𝐵))) · 𝑀) = ((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))))
6564oveq1d 6828 . . . . . . . . . . 11 (𝜑 → ((((𝑀↑2) + (2 · (𝑀 · 𝐵))) · 𝑀) + ((𝐵↑2) · 𝑀)) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((𝐵↑2) · 𝑀)))
6638, 45, 653eqtrd 2798 . . . . . . . . . 10 (𝜑 → (((𝑀 + 𝐵)↑2) · 𝑀) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((𝐵↑2) · 𝑀)))
6766oveq1d 6828 . . . . . . . . 9 (𝜑 → ((((𝑀 + 𝐵)↑2) · 𝑀) − ((4 · 𝐷) · 𝑀)) = ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((𝐵↑2) · 𝑀)) − ((4 · 𝐷) · 𝑀)))
68 3nn0 11502 . . . . . . . . . . . . 13 3 ∈ ℕ0
69 expcl 13072 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑀↑3) ∈ ℂ)
707, 68, 69sylancl 697 . . . . . . . . . . . 12 (𝜑 → (𝑀↑3) ∈ ℂ)
7154, 39mulcld 10252 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐵) · (𝑀↑2)) ∈ ℂ)
7270, 71addcld 10251 . . . . . . . . . . 11 (𝜑 → ((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) ∈ ℂ)
7344, 7mulcld 10252 . . . . . . . . . . 11 (𝜑 → ((𝐵↑2) · 𝑀) ∈ ℂ)
74 mulcl 10212 . . . . . . . . . . . . 13 ((4 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (4 · 𝐷) ∈ ℂ)
7519, 30, 74sylancr 698 . . . . . . . . . . . 12 (𝜑 → (4 · 𝐷) ∈ ℂ)
7675, 7mulcld 10252 . . . . . . . . . . 11 (𝜑 → ((4 · 𝐷) · 𝑀) ∈ ℂ)
7772, 73, 76addsubassd 10604 . . . . . . . . . 10 (𝜑 → ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((𝐵↑2) · 𝑀)) − ((4 · 𝐷) · 𝑀)) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) · 𝑀) − ((4 · 𝐷) · 𝑀))))
7844, 75, 7subdird 10679 . . . . . . . . . . 11 (𝜑 → (((𝐵↑2) − (4 · 𝐷)) · 𝑀) = (((𝐵↑2) · 𝑀) − ((4 · 𝐷) · 𝑀)))
7978oveq2d 6829 . . . . . . . . . 10 (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) · 𝑀) − ((4 · 𝐷) · 𝑀))))
8077, 79eqtr4d 2797 . . . . . . . . 9 (𝜑 → ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((𝐵↑2) · 𝑀)) − ((4 · 𝐷) · 𝑀)) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)))
8144, 75subcld 10584 . . . . . . . . . . . 12 (𝜑 → ((𝐵↑2) − (4 · 𝐷)) ∈ ℂ)
8281, 7mulcld 10252 . . . . . . . . . . 11 (𝜑 → (((𝐵↑2) − (4 · 𝐷)) · 𝑀) ∈ ℂ)
8372, 82addcld 10251 . . . . . . . . . 10 (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) ∈ ℂ)
8425negcld 10571 . . . . . . . . . . . 12 (𝜑 → -(𝐶↑2) ∈ ℂ)
8572, 82, 84addassd 10254 . . . . . . . . . . 11 (𝜑 → ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) + -(𝐶↑2)) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))))
8683, 25negsubd 10590 . . . . . . . . . . 11 (𝜑 → ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) + -(𝐶↑2)) = ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) − (𝐶↑2)))
87 dquart.3 . . . . . . . . . . 11 (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))) = 0)
8885, 86, 873eqtr3d 2802 . . . . . . . . . 10 (𝜑 → ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) − (𝐶↑2)) = 0)
8983, 25, 88subeq0d 10592 . . . . . . . . 9 (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) = (𝐶↑2))
9067, 80, 893eqtrd 2798 . . . . . . . 8 (𝜑 → ((((𝑀 + 𝐵)↑2) · 𝑀) − ((4 · 𝐷) · 𝑀)) = (𝐶↑2))
9118, 7mulcld 10252 . . . . . . . . 9 (𝜑 → (((𝑀 + 𝐵)↑2) · 𝑀) ∈ ℂ)
92 subsub23 10478 . . . . . . . . 9 (((((𝑀 + 𝐵)↑2) · 𝑀) ∈ ℂ ∧ ((4 · 𝐷) · 𝑀) ∈ ℂ ∧ (𝐶↑2) ∈ ℂ) → (((((𝑀 + 𝐵)↑2) · 𝑀) − ((4 · 𝐷) · 𝑀)) = (𝐶↑2) ↔ ((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) = ((4 · 𝐷) · 𝑀)))
9391, 76, 25, 92syl3anc 1477 . . . . . . . 8 (𝜑 → (((((𝑀 + 𝐵)↑2) · 𝑀) − ((4 · 𝐷) · 𝑀)) = (𝐶↑2) ↔ ((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) = ((4 · 𝐷) · 𝑀)))
9490, 93mpbid 222 . . . . . . 7 (𝜑 → ((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) = ((4 · 𝐷) · 𝑀))
9520, 30, 7mulassd 10255 . . . . . . 7 (𝜑 → ((4 · 𝐷) · 𝑀) = (4 · (𝐷 · 𝑀)))
9694, 95eqtrd 2794 . . . . . 6 (𝜑 → ((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) = (4 · (𝐷 · 𝑀)))
9796oveq1d 6828 . . . . 5 (𝜑 → (((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) / 4) = ((4 · (𝐷 · 𝑀)) / 4))
9891, 25, 20, 22divsubdird 11032 . . . . 5 (𝜑 → (((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) / 4) = (((((𝑀 + 𝐵)↑2) · 𝑀) / 4) − ((𝐶↑2) / 4)))
9930, 7mulcld 10252 . . . . . 6 (𝜑 → (𝐷 · 𝑀) ∈ ℂ)
10099, 20, 22divcan3d 10998 . . . . 5 (𝜑 → ((4 · (𝐷 · 𝑀)) / 4) = (𝐷 · 𝑀))
10197, 98, 1003eqtr3d 2802 . . . 4 (𝜑 → (((((𝑀 + 𝐵)↑2) · 𝑀) / 4) − ((𝐶↑2) / 4)) = (𝐷 · 𝑀))
10231, 35, 1013eqtrd 2798 . . 3 (𝜑 → (((((𝑀 + 𝐵)↑2) / 4) − (((𝐶↑2) / 4) / 𝑀)) · 𝑀) = (𝐷 · 𝑀))
10329, 30, 7, 27, 102mulcan2ad 10855 . 2 (𝜑 → ((((𝑀 + 𝐵)↑2) / 4) − (((𝐶↑2) / 4) / 𝑀)) = 𝐷)
10417, 103eqtrd 2794 1 (𝜑 → ((((𝑀 + 𝐵) / 2)↑2) − (((𝐶↑2) / 4) / 𝑀)) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  wne 2932  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  cmin 10458  -cneg 10459   / cdiv 10876  2c2 11262  3c3 11263  4c4 11264  0cn0 11484  cexp 13054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-n0 11485  df-z 11570  df-uz 11880  df-seq 12996  df-exp 13055
This theorem is referenced by:  dquart  24779
  Copyright terms: Public domain W3C validator