 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drex2 Structured version   Visualization version   GIF version

Theorem drex2 2327
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Hypothesis
Ref Expression
dral1.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drex2 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓))

Proof of Theorem drex2
StepHypRef Expression
1 hbae 2314 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
2 dral1.1 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2exbidh 1793 1 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1480  ∃wex 1703 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709 This theorem is referenced by:  dfid3  5023  dropab1  38477  dropab2  38478  e2ebind  38605
 Copyright terms: Public domain W3C validator