MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngnzr Structured version   Visualization version   GIF version

Theorem drngnzr 19025
Description: All division rings are nonzero. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
drngnzr (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)

Proof of Theorem drngnzr
StepHypRef Expression
1 drngring 18519 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 eqid 2605 . . 3 (0g𝑅) = (0g𝑅)
3 eqid 2605 . . 3 (1r𝑅) = (1r𝑅)
42, 3drngunz 18527 . 2 (𝑅 ∈ DivRing → (1r𝑅) ≠ (0g𝑅))
53, 2isnzr 19022 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
61, 4, 5sylanbrc 694 1 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1975  wne 2775  cfv 5786  0gc0g 15865  1rcur 18266  Ringcrg 18312  DivRingcdr 18512  NzRingcnzr 19020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-tpos 7212  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-3 10923  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-plusg 15723  df-mulr 15724  df-0g 15867  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-grp 17190  df-mgp 18255  df-ur 18267  df-ring 18314  df-oppr 18388  df-dvdsr 18406  df-unit 18407  df-drng 18514  df-nzr 19021
This theorem is referenced by:  rng1nfld  19041  drngdomn  19066  islinds4  19931  qqhnm  29164  lindsdom  32372  lindsenlbs  32373  matunitlindflem2  32375  isldepslvec2  42066  lmod1zrnlvec  42075  aacllem  42315
  Copyright terms: Public domain W3C validator