MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngui Structured version   Visualization version   GIF version

Theorem drngui 19510
Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
drngui.b 𝐵 = (Base‘𝑅)
drngui.z 0 = (0g𝑅)
drngui.r 𝑅 ∈ DivRing
Assertion
Ref Expression
drngui (𝐵 ∖ { 0 }) = (Unit‘𝑅)

Proof of Theorem drngui
StepHypRef Expression
1 drngui.r . . . 4 𝑅 ∈ DivRing
2 drngui.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2823 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
4 drngui.z . . . . 5 0 = (0g𝑅)
52, 3, 4isdrng 19508 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
61, 5mpbi 232 . . 3 (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))
76simpri 488 . 2 (Unit‘𝑅) = (𝐵 ∖ { 0 })
87eqcomi 2832 1 (𝐵 ∖ { 0 }) = (Unit‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  cdif 3935  {csn 4569  cfv 6357  Basecbs 16485  0gc0g 16715  Ringcrg 19299  Unitcui 19391  DivRingcdr 19504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365  df-drng 19506
This theorem is referenced by:  cnflddiv  20577  cnfldinv  20578  cnsubdrglem  20598  cnmgpabl  20608  cnmsubglem  20610  gzrngunit  20613  zringunit  20637  expghm  20645  psgninv  20728  zrhpsgnmhm  20730  amgmlem  25569  dchrghm  25834  dchrabs  25838  sum2dchr  25852  lgseisenlem4  25956  qrngdiv  26202  proot1ex  39808  amgmwlem  44910  amgmlemALT  44911
  Copyright terms: Public domain W3C validator