MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsb1 Structured version   Visualization version   GIF version

Theorem drsb1 2361
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 2-Jun-1993.)
Assertion
Ref Expression
drsb1 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))

Proof of Theorem drsb1
StepHypRef Expression
1 equequ1 1938 . . . . 5 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
21sps 2041 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
32imbi1d 329 . . 3 (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑦 = 𝑧𝜑)))
42anbi1d 736 . . . 4 (∀𝑥 𝑥 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑦 = 𝑧𝜑)))
54drex1 2311 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑧𝜑) ↔ ∃𝑦(𝑦 = 𝑧𝜑)))
63, 5anbi12d 742 . 2 (∀𝑥 𝑥 = 𝑦 → (((𝑥 = 𝑧𝜑) ∧ ∃𝑥(𝑥 = 𝑧𝜑)) ↔ ((𝑦 = 𝑧𝜑) ∧ ∃𝑦(𝑦 = 𝑧𝜑))))
7 df-sb 1867 . 2 ([𝑧 / 𝑥]𝜑 ↔ ((𝑥 = 𝑧𝜑) ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
8 df-sb 1867 . 2 ([𝑧 / 𝑦]𝜑 ↔ ((𝑦 = 𝑧𝜑) ∧ ∃𝑦(𝑦 = 𝑧𝜑)))
96, 7, 83bitr4g 301 1 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wal 1472  wex 1694  [wsb 1866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-12 2032  ax-13 2229
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867
This theorem is referenced by:  sbco3  2401  iotaeq  5759
  Copyright terms: Public domain W3C validator