Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmlss Structured version   Visualization version   GIF version

Theorem dsmmlss 20020
 Description: The finite hull of a product of modules is additionally closed under scalar multiplication and thus is a linear subspace of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmlss.i (𝜑𝐼𝑊)
dsmmlss.s (𝜑𝑆 ∈ Ring)
dsmmlss.r (𝜑𝑅:𝐼⟶LMod)
dsmmlss.k ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = 𝑆)
dsmmlss.p 𝑃 = (𝑆Xs𝑅)
dsmmlss.u 𝑈 = (LSubSp‘𝑃)
dsmmlss.h 𝐻 = (Base‘(𝑆m 𝑅))
Assertion
Ref Expression
dsmmlss (𝜑𝐻𝑈)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅   𝑥,𝐼   𝑥,𝑃   𝑥,𝐻
Allowed substitution hints:   𝑈(𝑥)   𝑊(𝑥)

Proof of Theorem dsmmlss
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dsmmlss.p . . 3 𝑃 = (𝑆Xs𝑅)
2 dsmmlss.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
3 dsmmlss.i . . 3 (𝜑𝐼𝑊)
4 dsmmlss.s . . 3 (𝜑𝑆 ∈ Ring)
5 dsmmlss.r . . . 4 (𝜑𝑅:𝐼⟶LMod)
6 lmodgrp 18802 . . . . 5 (𝑎 ∈ LMod → 𝑎 ∈ Grp)
76ssriv 3591 . . . 4 LMod ⊆ Grp
8 fss 6018 . . . 4 ((𝑅:𝐼⟶LMod ∧ LMod ⊆ Grp) → 𝑅:𝐼⟶Grp)
95, 7, 8sylancl 693 . . 3 (𝜑𝑅:𝐼⟶Grp)
101, 2, 3, 4, 9dsmmsubg 20019 . 2 (𝜑𝐻 ∈ (SubGrp‘𝑃))
11 dsmmlss.k . . . . . . 7 ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = 𝑆)
121, 4, 3, 5, 11prdslmodd 18901 . . . . . 6 (𝜑𝑃 ∈ LMod)
1312adantr 481 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑃 ∈ LMod)
14 simprl 793 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
15 simprr 795 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑏𝐻)
16 eqid 2621 . . . . . . . . 9 (𝑆m 𝑅) = (𝑆m 𝑅)
17 eqid 2621 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
18 ffn 6007 . . . . . . . . . 10 (𝑅:𝐼⟶LMod → 𝑅 Fn 𝐼)
195, 18syl 17 . . . . . . . . 9 (𝜑𝑅 Fn 𝐼)
201, 16, 17, 2, 3, 19dsmmelbas 20015 . . . . . . . 8 (𝜑 → (𝑏𝐻 ↔ (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
2120adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑏𝐻 ↔ (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
2215, 21mpbid 222 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑏 ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
2322simpld 475 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑏 ∈ (Base‘𝑃))
24 eqid 2621 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
25 eqid 2621 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
26 eqid 2621 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
2717, 24, 25, 26lmodvscl 18812 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏 ∈ (Base‘𝑃)) → (𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃))
2813, 14, 23, 27syl3anc 1323 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃))
2922simprd 479 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
30 eqid 2621 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
314ad2antrr 761 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑆 ∈ Ring)
323ad2antrr 761 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝐼𝑊)
3319ad2antrr 761 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑅 Fn 𝐼)
34 fex 6450 . . . . . . . . . . . . . . . . . 18 ((𝑅:𝐼⟶LMod ∧ 𝐼𝑊) → 𝑅 ∈ V)
355, 3, 34syl2anc 692 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ V)
361, 4, 35prdssca 16048 . . . . . . . . . . . . . . . 16 (𝜑𝑆 = (Scalar‘𝑃))
3736fveq2d 6157 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑆) = (Base‘(Scalar‘𝑃)))
3837eleq2d 2684 . . . . . . . . . . . . . 14 (𝜑 → (𝑎 ∈ (Base‘𝑆) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑃))))
3938biimpar 502 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (Base‘(Scalar‘𝑃))) → 𝑎 ∈ (Base‘𝑆))
4039adantrr 752 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → 𝑎 ∈ (Base‘𝑆))
4140adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘𝑆))
4223adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑏 ∈ (Base‘𝑃))
43 simpr 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑥𝐼)
441, 17, 25, 30, 31, 32, 33, 41, 42, 43prdsvscafval 16072 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)))
4544adantrr 752 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)))
465ffvelrnda 6320 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ LMod)
4746adantlr 750 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (𝑅𝑥) ∈ LMod)
48 simplrl 799 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
4936adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 𝑆 = (Scalar‘𝑃))
5011, 49eqtrd 2655 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → (Scalar‘(𝑅𝑥)) = (Scalar‘𝑃))
5150fveq2d 6157 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘𝑃)))
5251adantlr 750 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘𝑃)))
5348, 52eleqtrrd 2701 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑥))))
54 eqid 2621 . . . . . . . . . . . . 13 (Scalar‘(𝑅𝑥)) = (Scalar‘(𝑅𝑥))
55 eqid 2621 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅𝑥)) = ( ·𝑠 ‘(𝑅𝑥))
56 eqid 2621 . . . . . . . . . . . . 13 (Base‘(Scalar‘(𝑅𝑥))) = (Base‘(Scalar‘(𝑅𝑥)))
57 eqid 2621 . . . . . . . . . . . . 13 (0g‘(𝑅𝑥)) = (0g‘(𝑅𝑥))
5854, 55, 56, 57lmodvs0 18829 . . . . . . . . . . . 12 (((𝑅𝑥) ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑥)))) → (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥)))
5947, 53, 58syl2anc 692 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥)))
60 oveq2 6618 . . . . . . . . . . . 12 ((𝑏𝑥) = (0g‘(𝑅𝑥)) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))))
6160eqeq1d 2623 . . . . . . . . . . 11 ((𝑏𝑥) = (0g‘(𝑅𝑥)) → ((𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥)) ↔ (𝑎( ·𝑠 ‘(𝑅𝑥))(0g‘(𝑅𝑥))) = (0g‘(𝑅𝑥))))
6259, 61syl5ibrcom 237 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑏𝑥) = (0g‘(𝑅𝑥)) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥))))
6362impr 648 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → (𝑎( ·𝑠 ‘(𝑅𝑥))(𝑏𝑥)) = (0g‘(𝑅𝑥)))
6445, 63eqtrd 2655 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ (𝑥𝐼 ∧ (𝑏𝑥) = (0g‘(𝑅𝑥)))) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (0g‘(𝑅𝑥)))
6564expr 642 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → ((𝑏𝑥) = (0g‘(𝑅𝑥)) → ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) = (0g‘(𝑅𝑥))))
6665necon3d 2811 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) ∧ 𝑥𝐼) → (((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥)) → (𝑏𝑥) ≠ (0g‘(𝑅𝑥))))
6766ss2rabdv 3667 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ⊆ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))})
68 ssfi 8132 . . . . 5 (({𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ⊆ {𝑥𝐼 ∣ (𝑏𝑥) ≠ (0g‘(𝑅𝑥))}) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
6929, 67, 68syl2anc 692 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)
701, 16, 17, 2, 3, 19dsmmelbas 20015 . . . . 5 (𝜑 → ((𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻 ↔ ((𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
7170adantr 481 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → ((𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻 ↔ ((𝑎( ·𝑠𝑃)𝑏) ∈ (Base‘𝑃) ∧ {𝑥𝐼 ∣ ((𝑎( ·𝑠𝑃)𝑏)‘𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin)))
7228, 69, 71mpbir2and 956 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑏𝐻)) → (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)
7372ralrimivva 2966 . 2 (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)
74 dsmmlss.u . . . 4 𝑈 = (LSubSp‘𝑃)
7524, 26, 17, 25, 74islss4 18894 . . 3 (𝑃 ∈ LMod → (𝐻𝑈 ↔ (𝐻 ∈ (SubGrp‘𝑃) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)))
7612, 75syl 17 . 2 (𝜑 → (𝐻𝑈 ↔ (𝐻 ∈ (SubGrp‘𝑃) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑃))∀𝑏𝐻 (𝑎( ·𝑠𝑃)𝑏) ∈ 𝐻)))
7710, 73, 76mpbir2and 956 1 (𝜑𝐻𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  {crab 2911  Vcvv 3189   ⊆ wss 3559   Fn wfn 5847  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610  Fincfn 7907  Basecbs 15792  Scalarcsca 15876   ·𝑠 cvsca 15877  0gc0g 16032  Xscprds 16038  Grpcgrp 17354  SubGrpcsubg 17520  Ringcrg 18479  LModclmod 18795  LSubSpclss 18864   ⊕m cdsmm 20007 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-hom 15898  df-cco 15899  df-0g 16034  df-prds 16040  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-grp 17357  df-minusg 17358  df-sbg 17359  df-subg 17523  df-mgp 18422  df-ur 18434  df-ring 18481  df-lmod 18797  df-lss 18865  df-dsmm 20008 This theorem is referenced by:  dsmmlmod  20021  frlmlss  20027
 Copyright terms: Public domain W3C validator